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Abstract

Is there an alternative mathematics? In particular, does intuitionism yield an essen-
tially new approach that cannot be specified within classical mathematics? The intended
informal meaning of intuitionistic logic Int was given in the 1930s by the Brouwer-Heyting-
Kolmogorov semantics which understands intuitionistic truth as provability. Moreover,
Kolmogorov (and later Godel) suggested interpreting Int via classical provability and
thus providing a meaningful semantics for Int independent of intuitionistic assumptions.
Natural attempts to formalize this semantics met serious difficulties related to Godel’s
incompleteness phenomenon. In this lecture we will talk about recent advances in this
area that have bridged the incompleteness gap and provided an adequate formalization of
the propositional Brouwer-Heyting-Kolmogorov semantics based on classical provability.
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1 Brouwer - Heyting - Kolmogorov provability semantics for
intuitionistic logic

According to Brouwer (1907 and 1918), intuitionistic truth means provability. Here is a sum-
mary in this issue taken from A. Troelstra and D. van Dalen Constructivism in Mathematics.
An Introduction, v. 1 (1988). page 4.

“It does not make sense to think of truth or falsity of a mathematical statement indepen-
dently of our knowledge concerning the statement. A statement is ¢rue if we have a proof
of it, and false if we can show that the assumption that there is a proof for the statement
leads to a contradiction.”

In 1931-32 Heyting and Kolmogorov made Brouwer’s definition of intuitionistic truth explicit,
though informal, by introducing what is now known as Brouwer-Heyting-Kolmogorov (BHK)
semantics. Now BHK semantics is widely recognized as the intended semantics for intuitionis-
tic logic Int'. According to BHK a statement is true if it has a proof, and a proof of a logically
compound statement is given in terms of the proofs of its components. The description uses
the unexplained primitive notions of construction and proof. It stipulates that

e a proof of a proposition AAB consists of a proof of A and a proof of B,

a proof of AV B is given by presenting either a proof of A or a proof of B2,

a proof of A— B is a construction which, given a proof of A returns a proof of B,

absurdity | is a proposition which has no proof and a proof of = A is a construction
which, given a proof of A, would return a proof of 1.

Here are minimal a priori requirements to a formal BHK semantics for intuitionistic logic.

1. Tt should be based on real proofs in a certain background formal theory (or a class of
theories). In particular,

Tn this talk by Int we understand intuitionistic propositional logic also known as IPC. The provability se-
mantics problem for Int was central in the papers A. Kolmogoroff, “Zur Deutung der intuitionistischen Logik.”
- Mathematische Zeitschrift, v. 35 (1932), pp. 58-65 and K. Gddel, “Eine Interpretation des intuitionistischen
Aussagenkalkuls”, Ergebnisse eines mathematischen Kolloquiums, v. 4 (1933), p. 39-40.

*Nowhere in the original Heyting or Kolmogorov writings could T find the well-known extra condition on
the disjunction: a proof of a disjunction should also specify which one of the disjuncts it is a proof of. This
condition is clearly redundant for the usual notion of a proof: since the predicate “p is a proof of F”” is decidable
given a proof p we always know which one of the disjuncts p is a proof of. Kreisel (1965) suggested some further
modifications of the BHK semantics. In our talk we consider the original BHK formulation by Heyting and
Kolmogorov.



a) the predicate Proof(p,F) meaning “p is a BHK proof of F” should be decidable,
b) BHK proofs should enumerate theorems of the background theory T, i.e.

T+ F < Proof(p,F) for some p

2. It should be non-circular. For example, BHK proofs should not be derivations in a
formal system based on Int itself.

Until recently there were no sound semantics for Int suggested which met these minimal
BHK requirements. Dirk van Dalen in the chapter “Intuitionistic Logic” in Handbook of
Philosophical Logic, v. 3. (1986), p. 243, writes:

“The intended interpretation of intuitionistic logic as presented by Heyting, Kreisel and
others® so far has proved to be rather elusive. ... However, ever since Heyting’s formal-
ization, various, more or less artificial, semantics have been proposed.”

There is an important distinction between Heyting’s and Kolmogorov’s descriptions of the
BHK semantics. Despite strong technical similarities their approaches had fundamentally
different objectives. Presumably, Heyting explained Int in terms of the intuitionistic under-
standing of constructions and proofs. Kolmogorov in 1932 (and then Godel in 1933 and 1938)
intended to interpret intuitionistic logic on the basis of the usual mathematical notion of proof
(problem solution), and thus to provide a definition of Int within classical mathematics in-
dependent of the intuitionistic assumptions. For purposes of formalization of BHK semantics
it is important to distinguish between Heyting and Kolmogorov - Godel interpretations. We
will use the names intuitionistic BHK semantics for the former and classical BHK semantics
for the latter. In this talk we will be interested in the classical BHK semantics.

Intuitionistically acceptable semantics for the intuitionistic logic was studied by Kreisel,
Kripke, Dyson, van Dalen, Leivant, Veldman, de Swart, Dummet, Troelstra, H. Friedman,
Visser, and others. Those studies met considerable technical difficulties (cf. D. van Dalen’s
chapter “Intuitionistic Logic” in Handbook of Philosophical Logic, v. 3. (1986)). To the best
of our knowledge none of the suggested interpretations satisfies the minimal requirements to
a formal BHK semantics above.

Here is the list of major known classical semantics for intuitionistic logic.

Algebraic semantics (Birkhoff, 1935)

Topological semantics (Stone, 1937; Tarski, 1938)
Realizability semantics (Kleene, 1945)

Beth models (1956)

Dialectica Interpretation (Godel, 1958)

6. Curry - Howard isomorphism (1958)
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31.e. the BHK semantics. — S.A.



7. Medvedev’s logic of problems (1962)

8. Kripke models (1965)

9. Kuznetsov - Muravitsky - Goldblatt - Boolos provability interpretation (1976)
10. Categorical semantics (Goldblatt, 1979)

Those interpretations have shown to be extremely fruitful for understanding intuitionistic
logic. However, none of them may be considered as a BHK type semantics.

Semantics 1 — 5, 7, 8, 10 are not connected to provability. In particular, Kleene realizability
provides a computational but not provability semantics of intuitionistic logic*. Indeed, the
predicate “x realizes F”” is not decidable, Kleene realizers do not enumerate theorems of any
formal theory. It is also worth of mentioning that Kleene realizability is not an adequate
semantics for Int, i.e. there are realizable propositional formulas not derivable in Int.

Curry - Howard isomorphism transliterates natural derivations in Int to the corresponding
A-terms. This is a powerful device connecting proofs and programs which may be regarded
as a sort of a computational semantics for Int. However, its foundational significance is
rather limited. From the BHK point of view Curry - Howard isomorphism provides the trivial
semantics which defines “F' is intuitionistically true” as “F' is derivable in Int” and therefore
is obviously circular.

Kuznetsov - Muravitsky - Goldblatt - Boolos semantics for Int translates a propositional
formula F' into F'~ by prefixing all atoms and all implications in F' by the modal operator
O (McKinsey - Tarski translation) and then decodes OA as “A and Provable(A)” where
Provable is the predicate of formal provability in the first order arithmetic PA. Int is known
to be sound and complete with respect to this semantics. This semantics, however, is highly
nonconstructive since it appeals to the unrestricted notion of classical truth for arithmetical
formulas. For example, it stipulates that A A B is intuitionistically true iff A and B are both
classically true and provable in PA. In addition, it has nothing to do with BHK since there
are no individual proofs and operations on proofs present whatsoever.

An attempt to formalize BHK semantics directly was made by Kreisel in 1962 and 1965
in his theory of constructions. Kreisel’s original variant of the theory turned out to be incon-
sistent, and the problem occurred already at the propositional level. Goodman (1970) fixed
that gap but his solution involved a stratification of constructions into levels which ruined the
BHK character of this semantics. In particular, a proof of A— B was no longer a function that
could be applied to any proof of A. A comprehensive account of Kreisel - Goodman theory
could by found in the paper by S. Weinstein, “The intended interpretation of intuitionistic
logic”, Journal of Philosophical Logic, v. 12 (1983), pp. 261-270, which concludes that

“The interpretation of intuitionistic theories in terms of the notions of proof and construc-
tion ... has yet, however, failed to receive a definitive formulation.”

*Kleene himself denied any connection of his realizability with BHK interpretation.



In this talk we will demonstrate that the propositional classical BHK semantics admits an
exact mathematical formalization, which indeed provides an adequate specification of Int on
the basis of the usual classical notion of proof independent of any intuitionistic assumptions.
This solves the problem studied by Kolmogorov (1932) and Godel (1933).

Along with the obvious foundational®, historical® and mathematical” motivations for tack-
ling this problem, I would like to mention two more.

1. Modal logic and A-terms provide two parallel languages describing provability. Modality
permits iterations, A-terms are explicit and more informative. Why don’t we try to do
both?

2. There is a number of questions in modal logic, typed theories, knowledge representation,
constructive semantics, theory of verification, etc. related to the notion of probability,
which have not been addressed by the traditional theory of formal (implicit) provability.

2 Defining intuitionistic logic in classical provability logic

Perhaps, the first paper on formal provability semantics for intuitionistic logic was written
in 1928 by Orlov in Russian®. Referring to Brouwer’s papers on intuitionism he suggested
prefixing all subformulas of a given propositional intuitionistic formula by O with the informal
reading of OF as “F' is provable”, and understanding the logical connectives in the usual
classical way. His modal axioms for provability coincide with the Gédel axioms for the modal
logic S4 (1933), though Orlov’s system was weaker than S4 because he chose a certain proper
fragment of classical logic on the background.

Godel in 1933 independently introduced the modal calculus of provability (which turned
out to be another axiomatization of one of the Lewis modal systems S4) and defined Int in
this logic. Godel’s provability logic admits all axioms and rules of classical logic and has the
modal axioms and rules

OF - F,

O(F —-G)— (0OF —-0G),
OF —0O0aF,

F + OF (necessitation rule).

Godel considered the translation ¢(F) of an intuitionistic formula F' into the classical modal
language similar to the Orlov translation: “box each subformula of F”. Both apparently

®A loophole in the foundations of constructive logic.

60One of the oldest well-known problems in logic.

TA challenge: new approaches were needed.

8L.E. Orlov. “Izchislenie sovmesntosti predlozhenii” Matematicheskii sbornik (i.e. “The calculus of compat-
ibility of propositions”, Mathematics of the USSR, Sbornik), v. 35 (1928), pp.263-286 (in Russian).



considered such a translation to be a fair formalization of the Brouwer thesis
intuitionistic truth = provability.

Indeed, a consistent substituting “provable” for “true” in the usual inductive definition the
truth of a logical formula F leads to #(F). Godel established that

Int-F =S4+ t(F),

thus providing an exact reading of the Int formulas as statements about provability in classical
mathematics. He conjectured that the converse <= also holds. This conjecture was eventually
confirmed in 1948 by McKinsey and Tarski. However, the ultimate goal of defining Int via the
notion of a proof in classical mathematics had not been achieved because S4 was left without
an exact intended semantics of the provability operator O.

Int -S4~ ... ? ...— RFAL PROOFS

By REAL PROOFS here we understand any rigorously defined system of proofs in sufficiently
rich formal mathematical theories. In particular, we expect such a system to be represented
by a binary predicate Proof(p,F) (a shorthand for “p is a proof of F”) satisfying the minimal
BHK requirements above. Model case: the standard proof predicate Proof (z,y) in the first
order arithmetic PA denoting the decidable relation “z is the code of a proof of the formula
having a code y”.

Godel himself was the first who addressed the issue of provability semantics for S4 and
figured out that there was a problem there. He pointed out that the straightforward reading
of OF as Provable(F) contradicted his incompleteness theorem.

Let L be the boolean constant false; then the S4-axiom O1 — L corresponds to the
statement Consis PA, expressing consistency of PA. By necessitation, S4 derives O(O0L —
1). The latter formula expresses the assertion that Consis PA is provable in PA, which
is false according to the second Gdédel incompleteness theorem.

The issue of the intended provability semantics for S4 was addressed by Lemmon (1957),
Kripke (1963), Montague (1963), Mints (1974), Kuznetsov & Muravitsky (1977), Goldblatt
(1978), Boolos (1979, 1993), Buss (1990), Artemov (1990), and many others. However, the
problem of finding an adequate provability semantics for S4 remained open.

3 Explicit vs. implicit approaches

A problem with the reading S4 modality OF as the formal provability predicate Provable(F)
was caused by the existential quantifier over proofs in Provable(y). The latter is a shorthand



for 3z Proof (z,y), where Proof (x,y) is the standard arithmetical formula saying “z is the
code of a proof of a formula with the code y”. In a given model of arithmetic the formula
3z Proof (x, F') does not necessarily mean the existence of a proof of F. An element that
instantiates the existential quantifier may be nonstandard. In that case 3z Proof (z, F') is true
in the model, but there is no “real” PA-derivation behind such an x. This explains why the
reflection principle Provable(F) — F' is not derivable in PA: the formula Provable(F) does
not deliver a “real” proof of F.
On the other hand, the explicit reflection

Proof (n,F) — F

for each natural number n is internally provable. Indeed, if Proof(n,F) holds, then F' is
provable. If Proof (n,F) does not hold then its negation —Proof (n,F') is provable, since
Proof (z,y) is a decidable relation. In both cases Proof (n, F')— F is provable.

This consideration suggests the idea of introducing a kind of explicit provability logic
by switching from the formulas 3z Proof (x, F') to the formulas Proof(t,F) and replacing the
existential quantifier on proofs in the former by Skolem style operations on proofs in the latter.
The usual Skolem technique, however, does not work here, since one cannot move quantifiers
off the scope of the provability operator.

Some of these operations appeared in the proof of Gidel’s second incompleteness theorem.
Within that proof in order to establish what are now known as Hilbert-Bernays-Lob
derivability conditions one constructs computable functions m(z,y) and c(z) such that
PA + Proof (s, F—G) A Proof (t,F) — Proof(m(s,t),G);
PA + Proof (t, F) = Proof (c(t), Proof (t, F')).
Later in the proof these facts were relaxed to their simplified versions
PA + Provable(F — G) A Provable(F') — Provable(G),
PA + Provable(F) — Provable(Provable(F)),

sufficient to establish the incompleteness theorem.

In one of his lectures in 1938 (first published in 1995) Godel mentioned the possibility of
building an explicit version of S4 with basic propositions “t is a proof of F” (¢: F in the
modern notation) and thus getting a semantics of proofs for Int. Though neither definitions
nor axiomatization were given, Godel’s suggestion specified the format ¢: F' of an expected
solution of the provability semantics problem for S4 and for the BHK problem®. It turned
out that one more operation on proofs is needed to capture the whole of Gédel’s provability
logic S4.

®The author began working on logics with the atoms “t is a proof of F” and discovered the Logic of Proofs
LP below before Godel’s paper of 1938-1995 became known. The first papers by the author on the logics with
the atoms ¢ : F' but without operations on proofs appeared in 1992 (joint work with T. Strassen). An early
version of Logic of Proofs was finished during author’s extended visit to the Amsterdam University in the fall
of 1994. The system LP was first presented in 1994 at logic seminars in Amsterdam and Miinster.



4 Proof polynomials and Logic of Proofs

Definition The language of Logic of Proofs (LP) contains the usual language of classical
propositional logic along with

proof variables zy,...,,,... and proof constants ag,...,an,...,

function symbols ! (monadic), - and 4 (binary),

a formation symbol “:”.
Proof terms in LP (called proof polynomials) are constructed from variables and constants
by the operations -, +,!. We shall denote proof polynomials by p, s,%,.... Formulas in LP are
built from the propositional atoms by the usual boolean connectives and by the new formation
rule: if ¢ is a proof polynomial and F' a formula, then ¢: F' is a formula.

The intended semantics for p: F' is p is a proof of F, which will be formalized below. Note
that proof systems which provide a formal semantics for p: F are multi-conclusion ones, i.e.
p may denote a proof of several different F’s'0.

Definition The system LP along with the classical propositional logic contains the axioms:

Al t:F - F “verification”
A2. t:(F - G) = (s:F = (t-5):Q) “application”
A3. t:F — 1t:(t:F) “proof checker”
Aj. s:F — (s+t):F, t:F — (s+t):F “choice”

and the rule of inference:
R.Fc:Aif A is an aziom A0 - A4, and ¢ a proof constant “axiom necessitation”.

A Constant Specification (CS) is a finite set of formulas ¢y : Ay,...,¢, @ A, such that ¢; is
a constant, and A; an axiom A0 — Aj. Each derivation in LP naturally generates the CS
consisting of all formulas introduced in this derivation by the aziom necessitation rule. Proof
constants in LP stand for proofs of “simple facts”, namely propositional axioms and axioms A 1
~ AJ. Proof constants behave like atomic constant terms (combinators) of typed combinatory
logic. A constant c; specified as ¢;: (A— (B — A)) can be identified with the combinator k4-?
of the type A— (B— A). A constant cp such that c:[(A— (B—C)) = (A= B)—(4A—=C))]
corresponds to the combinator s4-5:C of the type (A — (B —C)) = ((A— B) = (A= C)).
The proof variables may be regarded as term variables of combinatory logic and the operation

0The difference between single conclusion and multi-conclusion proof systems is mostly cosmetic. Usual
proof systems (Hilbert or Gentzen style) may be considered as single conclusion ones if we assume that a proof
derives only the end formula (sequent) of a proof tree. On the other hand, the same systems may be regarded as
multi-conclusion by stipulating that a given proof derives all formulas assigned to the nodes of this proof tree.
The logic of strictly single conclusion proof systems FLP also admits (V. Krupski) a complete axiomatization.
FLP is not compatible with the usual modal logic. For example, in FLP the principle ¢: A — —t: (A— A) holds.
The forgetful projection of this principle is A ——0(A — A) which is inconsistent with any normal system of
modal logic. Therefore, strictly single conclusion proof systems are not directly relevant to the problem of a
provability semantics for S4. Provability as a modal operator corresponds to multi-conclusion proof systems.
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as the application of terms. In general an LP-formula ¢: F' can be read as a combinatory
term ¢ of the type F'. Typed combinatory logic CL_, thus corresponds to a fragment of LP
consisting only of formulas of the sort ¢: F' where ¢ contains no operations other than “” and
F' is a formula built from the propositional letters by “—=” only.

There is no restriction on the choice of a constant ¢ in R within a given derivation. In
particular, R allows us to introduce a formula c: A(c), or to specify a constant several times
as a proof of different axioms from A0 — A/.

The following constructive form of the necessitation rule is admissible in LP:

FF = Fp:F for some proof polynomial p

Here p is nothing but the blueprint of a given derivation of F' in LP. Therefore LP is a
propositional system capable of internalizing its own proofs.

No single operator “¢:” in LP is a modality since none of them satisfies the property
t:(P—Q) —(t: P —t:Q). This makes LP essentially different from polymodal logics where
the modality is upgraded by some additional features. In LP the modality is decomposed into
a family of proof polynomials.

5 Solution of Godel’s problem and the propositional classical
BHK problem

Under the standard provability interpretation of LP proof polynomials are evaluated by nat-
ural numbers, a formula ¢: F' is evaluated as Proof (t*,” F*7), where Proof(z,y) is any multi-
conclusion proof predicate in PA, t* and F* are the evaluations of ¢t and F' respectively, "G
is the Godel number of G. The operations and “!” are interpreted as Godel’s operations
a(z,y) and c(z) respectively. The operation s + ¢ is an analogue of a concatenation of s and
t, which is assumed to be present for a given proof predicate Proof(z,y).

w,»

Definition Let CS be a constant specification. An interpretation respects CS if all formulas
from (S are valid under this interpretation.

Completeness theorem for LP!!

F' is derivable in LP with a
constant specification CS & F s valid for any interpretation that respects CS

The completeness theorem says that LP contains all the logical tautologies concerning proof
polynomials. In the above notations

LP — REAL PROOFS

YT found the first version of the completeness theorem concerning some call-by-name semantics for LP in
1994. In 1998 I established the completeness theorem for the call-by-value semantics above.




It is easy to see that the forgetful projection of LP is correct with respect to S4. Indeed,
substituting O for all occurrences of “¢:” converts each LP derivation into a S4 derivation.
A much less trivial fact is that LP suffices to realize any S4 theorem.

Definition By an LP-realization of a modal formula F' we mean an assignment of proof
polynomials to all occurrences of the modality in F. Let F" be the image of F' under a
realization r.

In a provability context OF' is intuitively understood as “there exists a proof x of F”. After
a skolemization, all negative occurrences of O produce arguments of Skolem functions,
whereas positive ones give functions of those arguments. For example, O0A — OB should
be read informally as

dx “zis a proof of A” = Jy “yis a proof of B”,
with the Skolem form

“xis a proof of A” — “f(x) is a proof of B”.

The following definition captures this feature.

Definition A realization r is normal if all negative occurrences of O are realized by proof
variables.

Realization theorem!'?

If S4+ F, then LP = F" for some normal realization r.

It was not a priori clear how to build such a realization. Indeed, the naive induction on a
derivation in S4 fails: if A— B is realizable and A is realizable then we still cannot conclude
that B is realizable since those two occurrences of A may well have different realizations. In
fact it takes an iterative procedure which operates with the whole derivation of F' in S4 to
construct such a realization.

Here is an example which demonstrates the choice operation “+” at work. We first consider
a derivation in S4 of the formula (DJAVOB) — O(AVB):

1. A— (AVB), B— (AVB) propositional axioms
2. 0(A— AVB), O(B - AVB) from 1, by Necessitation
3. 0(A— AVB) — (0A — O(AVB)), O(B — AVB) — (OB — 0O(AVB)) S4 axioms
4. 0A - 0O(AVB), OB — 0O(AVB) from 2 and 3
5. (DAvVOB) — O(AVB) from 4, by propositional logic
In LP the corresponding derivation is
1. A—» AvB, B — AVB by A0,
2.a:(A— AV B), b:(B—AVB) by R,

12The author, 1994
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3. 2:A = (a-x):(AVB), y:B— (by):(AVB) from 2, by A2,
4. (a-z):(AVB) = (a-z+b-y): (AVB), (b-y):(AVB) — (a-x+b-y):(AVB) by A4,
5. (z:AVy:B) = (a-z+b-y):(AVB) from 4, by propositional logic.

S4 may be considered as a higher level language on the top of LP. A general recipe for
using S4 as a provability logic might be the following: derive in S4 and then translate the
result into LP to recover its provability meaning.

The Realization theorem above links S4 and LP thus connecting the chain of exact em-
beddings

Int — S4 — LP — REAL PROOFS

Definition A modal formula is proof realizable if there is a realization of it by proof polyno-
mials valid in arithmetic.

Corollary 1. (Godel’s problem of provability semantics for S4).
A modal formula is proof realizable if and only if it is derivable in S4.

We believe there is a sufficient evidence that here we have “the solution” rather than “a
solution” to the problem. Godel in 1938 introduced the LP format for understanding S4.
Given this format proof polynomials appear as the minimal system of proof terms sufficient
for realization of all operations on proofs that can be specified by a propositional condition.
In turn, the proof polynomials completely determine the axiom system for LP, which is
substantiated by the completeness theorem above.

Definition A propositional formula F' is proof realizable if the corresponding modal formula
t(F) is proof realizable.

Corollary 2. (The classical BHK problem for propositional logic).
A propositional formula is proof realizable iff it is derivable in Int

In what sense proof realizability of the propositional language meets the requirements to a
formal BHK semantics? Firstly, the proof realizability semantics is BHK compliant. Indeed,
by the axiom A2 of LP a proof polynomial realizing A — B acts as an operation that given
a proof of A returns a proof of B. A proof realizer of A A B yields proofs of both A and B.
A proof realizer of AV B produces either a proof realizer of A or a proof realizer of B. The
latter is supported by the fact that

S4+O(AV B) —» (OAVOB)

for all A and B prefixed by O, and by its explicit version in LP. Secondly, the proof realizability
semantics is based on real proof systems, it is not circular, and it provides an exact specification
of Int.
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We wish to think that here we also have “the solution” rather than “the first solution”
to the problem. Godel’s (and Orlov’s) translation is nothing but the straightforward clas-
sical formalization of Brouwer’s suggestion to understand intuitionistic truth as provability.
Therefore Int is a definable fragment of S4. Since proof polynomials provide the intended
provability semantics for S4 they do the same for Int as well.

6 First order case

Theories based on the first order S4 were studied by Hintikka, Mints, Myhill, Goodman,
H. Friedman, Flagg, Scedrov, S. Shapiro, and others.

In the first order logic of proofs constants and proof letters depend on individual variables:
u(¥), ¢(¥),... and are interpreted as provably recursive arithmetical terms. Here are some
examples of valid principles accompanied by their plain modal projections.

c(y): (VzA(z) = Ay)) D(VzA(z) = A(y))
u:YrA(z)— (c(y) - u): Ay) OVzA(z) — OA(y)
u:VrA(z) = Vy((e(y) -u): A(y)) OVzA(z)—VyOA(y)

In a recent joint paper with Tanya Sidon-Yavorskaya we have shown that the first order logic
of proofs is hyperarithmetical (in fact, II{(TA) complete). In particular, this means that
such logic does not admit a complete axiomatization. Similar results hold for the fragment of
the first order logic of proofs with constants and proof variables not depending on individual
variables.

7 Discussion

LP is an advanced system of combinatory logic that accommodates not only the “application”
operation, but also “proof checker” and “choice”. These operations subsume the simply typed
A-calculus together with the modal logic S4, and thus the whole of modal A-calculus. In
particular, LP creates the environment where modality and A-terms are objects of the same
nature, namely proof polynomials. Another way to look at it: modal logic is a forgetful
projection of the typed combinatory logic enriched by the operations “proof checker” and
“choice”.

There was a major difficulty standing in the way of presenting modality via a system
of terms: such a presentation should be self-referential and accommodate types containing
terms of any type, including its own, for example, z: F/(z). The choice of the combinatory
logic format for LP versus the obvious A-term one in fact allows us to come with the concise
representation of this self-referentiality. The natural A-term system doing the same job would
require an infinite supply of new term constructors and is less manageable.
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The realization of S4 in LP provides a fresh look at modal logic and its applications in
general. Proof polynomials reveal the dynamic character of modality. In recent papers by
V. Brezhnev, E. Kazakov, D. Shapiro and the author explicit counterparts of the modal logics
K, K4, and S5 were found and supplied with the provability semantics.

Such areas as modal A-calculi, polymorphic second order A-calculi, A-calculi with types
depending on terms, non-deterministic A-calculi, etc., could benefit from semantics similar to
the one delivered by LP.

Gabbay’s Labelled Deductive Systems may serve as a natural framework for LP. Intuition-
istic Type Theory by Martin-Lof also makes use of the format ¢: F' with its informal provability
reading. LP may also be regarded as a basic epistemic logic with explicit justifications; a
problem of finding such systems was raised by van Benthem.

The studies of the modal logics of formal provability (Solovay’s systems GL, S, etc.) have
given a valuable experience in arithmetical self-referential semantics for a variety of logical
languages. Neither completeness theorem nor realization theorem above apply results or
technique of the formal provability logics. However a substantial methodological influence of
those studies on the logics of explicit provability is undeniable.
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