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Abstra
t

Is there an alternative mathemati
s? In parti
ular, does intuitionism yield an essen-

tially new approa
h that 
annot be spe
i�ed within 
lassi
al mathemati
s? The intended

informal meaning of intuitionisti
 logi
 Int was given in the 1930s by the Brouwer-Heyting-

Kolmogorov semanti
s whi
h understands intuitionisti
 truth as provability. Moreover,

Kolmogorov (and later G�odel) suggested interpreting Int via 
lassi
al provability and

thus providing a meaningful semanti
s for Int independent of intuitionisti
 assumptions.

Natural attempts to formalize this semanti
s met serious diÆ
ulties related to G�odel's

in
ompleteness phenomenon. In this le
ture we will talk about re
ent advan
es in this

area that have bridged the in
ompleteness gap and provided an adequate formalization of

the propositional Brouwer-Heyting-Kolmogorov semanti
s based on 
lassi
al provability.

Plan

1. Brouwer - Heyting - Kolmogorov provability semanti
s for intuitionisti
 logi


2. De�ning intuitionisti
 logi
 in 
lassi
al provability logi


3. Expli
it vs. impli
it approa
hes

4. Proof polynomials and Logi
 of Proofs

5. Solution of G�odel's problem and the propositional BHK problem

6. First order 
ase

7. Dis
ussion
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1 Brouwer - Heyting - Kolmogorov provability semanti
s for

intuitionisti
 logi


A

ording to Brouwer (1907 and 1918), intuitionisti
 truth means provability. Here is a sum-

mary in this issue taken from A. Troelstra and D. van Dalen Constru
tivism in Mathemati
s.

An Introdu
tion, v. 1 (1988). page 4.

\It does not make sense to think of truth or falsity of a mathemati
al statement indepen-

dently of our knowledge 
on
erning the statement. A statement is true if we have a proof

of it, and false if we 
an show that the assumption that there is a proof for the statement

leads to a 
ontradi
tion."

In 1931-32 Heyting and Kolmogorov made Brouwer's de�nition of intuitionisti
 truth expli
it,

though informal, by introdu
ing what is now known as Brouwer-Heyting-Kolmogorov (BHK)

semanti
s. Now BHK semanti
s is widely re
ognized as the intended semanti
s for intuitionis-

ti
 logi
 Int

1

. A

ording to BHK a statement is true if it has a proof, and a proof of a logi
ally


ompound statement is given in terms of the proofs of its 
omponents. The des
ription uses

the unexplained primitive notions of 
onstru
tion and proof. It stipulates that

� a proof of a proposition A^B 
onsists of a proof of A and a proof of B,

� a proof of A_B is given by presenting either a proof of A or a proof of B

2

,

� a proof of A!B is a 
onstru
tion whi
h, given a proof of A returns a proof of B,

� absurdity ? is a proposition whi
h has no proof and a proof of :A is a 
onstru
tion

whi
h, given a proof of A, would return a proof of ?.

Here are minimal a priori requirements to a formal BHK semanti
s for intuitionisti
 logi
.

1. It should be based on real proofs in a 
ertain ba
kground formal theory (or a 
lass of

theories). In parti
ular,

1

In this talk by Int we understand intuitionisti
 propositional logi
 also known as IPC. The provability se-

manti
s problem for Int was 
entral in the papers A. Kolmogoro�, \Zur Deutung der intuitionistis
hen Logik."

- Mathematis
he Zeits
hrift, v. 35 (1932), pp. 58-65 and K. G�odel, \Eine Interpretation des intuitionistis
hen

Aussagenkalkuls", Ergebnisse eines mathematis
hen Kolloquiums, v. 4 (1933), p. 39-40.

2

Nowhere in the original Heyting or Kolmogorov writings 
ould I �nd the well-known extra 
ondition on

the disjun
tion: a proof of a disjun
tion should also spe
ify whi
h one of the disjun
ts it is a proof of. This


ondition is 
learly redundant for the usual notion of a proof: sin
e the predi
ate \p is a proof of F" is de
idable

given a proof p we always know whi
h one of the disjun
ts p is a proof of. Kreisel (1965) suggested some further

modi�
ations of the BHK semanti
s. In our talk we 
onsider the original BHK formulation by Heyting and

Kolmogorov.
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a) the predi
ate Proof(p,F) meaning \p is a BHK proof of F" should be de
idable,

b) BHK proofs should enumerate theorems of the ba
kground theory T , i.e.

T ` F , Proof(p,F) for some p

2. It should be non-
ir
ular. For example, BHK proofs should not be derivations in a

formal system based on Int itself.

Until re
ently there were no sound semanti
s for Int suggested whi
h met these minimal

BHK requirements. Dirk van Dalen in the 
hapter \Intuitionisti
 Logi
" in Handbook of

Philosophi
al Logi
, v. 3. (1986), p. 243, writes:

\The intended interpretation of intuitionisti
 logi
 as presented by Heyting, Kreisel and

others

3

so far has proved to be rather elusive. ... However, ever sin
e Heyting's formal-

ization, various, more or less arti�
ial, semanti
s have been proposed."

There is an important distin
tion between Heyting's and Kolmogorov's des
riptions of the

BHK semanti
s. Despite strong te
hni
al similarities their approa
hes had fundamentally

di�erent obje
tives. Presumably, Heyting explained Int in terms of the intuitionisti
 under-

standing of 
onstru
tions and proofs. Kolmogorov in 1932 (and then G�odel in 1933 and 1938)

intended to interpret intuitionisti
 logi
 on the basis of the usual mathemati
al notion of proof

(problem solution), and thus to provide a de�nition of Int within 
lassi
al mathemati
s in-

dependent of the intuitionisti
 assumptions. For purposes of formalization of BHK semanti
s

it is important to distinguish between Heyting and Kolmogorov - G�odel interpretations. We

will use the names intuitionisti
 BHK semanti
s for the former and 
lassi
al BHK semanti
s

for the latter. In this talk we will be interested in the 
lassi
al BHK semanti
s.

Intuitionisti
ally a

eptable semanti
s for the intuitionisti
 logi
 was studied by Kreisel,

Kripke, Dyson, van Dalen, Leivant, Veldman, de Swart, Dummet, Troelstra, H. Friedman,

Visser, and others. Those studies met 
onsiderable te
hni
al diÆ
ulties (
f. D. van Dalen's


hapter \Intuitionisti
 Logi
" in Handbook of Philosophi
al Logi
, v. 3. (1986)). To the best

of our knowledge none of the suggested interpretations satis�es the minimal requirements to

a formal BHK semanti
s above.

Here is the list of major known 
lassi
al semanti
s for intuitionisti
 logi
.

1. Algebrai
 semanti
s (Birkho�, 1935)

2. Topologi
al semanti
s (Stone, 1937; Tarski, 1938)

3. Realizability semanti
s (Kleene, 1945)

4. Beth models (1956)

5. Diale
ti
a Interpretation (G�odel, 1958)

6. Curry - Howard isomorphism (1958)

3

I.e. the BHK semanti
s. { S.A.
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7. Medvedev's logi
 of problems (1962)

8. Kripke models (1965)

9. Kuznetsov - Muravitsky - Goldblatt - Boolos provability interpretation (1976)

10. Categori
al semanti
s (Goldblatt, 1979)

Those interpretations have shown to be extremely fruitful for understanding intuitionisti


logi
. However, none of them may be 
onsidered as a BHK type semanti
s.

Semanti
s 1 { 5, 7, 8, 10 are not 
onne
ted to provability. In parti
ular, Kleene realizability

provides a 
omputational but not provability semanti
s of intuitionisti
 logi


4

. Indeed, the

predi
ate \x realizes F" is not de
idable, Kleene realizers do not enumerate theorems of any

formal theory. It is also worth of mentioning that Kleene realizability is not an adequate

semanti
s for Int, i.e. there are realizable propositional formulas not derivable in Int.

Curry - Howard isomorphism transliterates natural derivations in Int to the 
orresponding

�-terms. This is a powerful devi
e 
onne
ting proofs and programs whi
h may be regarded

as a sort of a 
omputational semanti
s for Int. However, its foundational signi�
an
e is

rather limited. From the BHK point of view Curry - Howard isomorphism provides the trivial

semanti
s whi
h de�nes \F is intuitionisti
ally true" as \F is derivable in Int" and therefore

is obviously 
ir
ular.

Kuznetsov - Muravitsky - Goldblatt - Boolos semanti
s for Int translates a propositional

formula F into F

�

by pre�xing all atoms and all impli
ations in F by the modal operator

2 (M
Kinsey - Tarski translation) and then de
odes 2A as \A and Provable(A)" where

Provable is the predi
ate of formal provability in the �rst order arithmeti
 PA. Int is known

to be sound and 
omplete with respe
t to this semanti
s. This semanti
s, however, is highly

non
onstru
tive sin
e it appeals to the unrestri
ted notion of 
lassi
al truth for arithmeti
al

formulas. For example, it stipulates that A^B is intuitionisti
ally true i� A and B are both


lassi
ally true and provable in PA. In addition, it has nothing to do with BHK sin
e there

are no individual proofs and operations on proofs present whatsoever.

An attempt to formalize BHK semanti
s dire
tly was made by Kreisel in 1962 and 1965

in his theory of 
onstru
tions. Kreisel's original variant of the theory turned out to be in
on-

sistent, and the problem o

urred already at the propositional level. Goodman (1970) �xed

that gap but his solution involved a strati�
ation of 
onstru
tions into levels whi
h ruined the

BHK 
hara
ter of this semanti
s. In parti
ular, a proof of A!B was no longer a fun
tion that


ould be applied to any proof of A. A 
omprehensive a

ount of Kreisel - Goodman theory


ould by found in the paper by S. Weinstein, \The intended interpretation of intuitionisti


logi
", Journal of Philosophi
al Logi
, v. 12 (1983), pp. 261-270, whi
h 
on
ludes that

\The interpretation of intuitionisti
 theories in terms of the notions of proof and 
onstru
-

tion ... has yet, however, failed to re
eive a de�nitive formulation."

4

Kleene himself denied any 
onne
tion of his realizability with BHK interpretation.
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In this talk we will demonstrate that the propositional 
lassi
al BHK semanti
s admits an

exa
t mathemati
al formalization, whi
h indeed provides an adequate spe
i�
ation of Int on

the basis of the usual 
lassi
al notion of proof independent of any intuitionisti
 assumptions.

This solves the problem studied by Kolmogorov (1932) and G�odel (1933).

Along with the obvious foundational

5

, histori
al

6

and mathemati
al

7

motivations for ta
k-

ling this problem, I would like to mention two more.

1. Modal logi
 and �-terms provide two parallel languages des
ribing provability. Modality

permits iterations, �-terms are expli
it and more informative. Why don't we try to do

both?

2. There is a number of questions in modal logi
, typed theories, knowledge representation,


onstru
tive semanti
s, theory of veri�
ation, et
. related to the notion of probability,

whi
h have not been addressed by the traditional theory of formal (impli
it) provability.

2 De�ning intuitionisti
 logi
 in 
lassi
al provability logi


Perhaps, the �rst paper on formal provability semanti
s for intuitionisti
 logi
 was written

in 1928 by Orlov in Russian

8

. Referring to Brouwer's papers on intuitionism he suggested

pre�xing all subformulas of a given propositional intuitionisti
 formula by 2 with the informal

reading of 2F as \F is provable", and understanding the logi
al 
onne
tives in the usual


lassi
al way. His modal axioms for provability 
oin
ide with the G�odel axioms for the modal

logi
 S4 (1933), though Orlov's system was weaker than S4 be
ause he 
hose a 
ertain proper

fragment of 
lassi
al logi
 on the ba
kground.

G�odel in 1933 independently introdu
ed the modal 
al
ulus of provability (whi
h turned

out to be another axiomatization of one of the Lewis modal systems S4) and de�ned Int in

this logi
. G�odel's provability logi
 admits all axioms and rules of 
lassi
al logi
 and has the

modal axioms and rules

2F!F ,

2(F!G)!(2F!2G),

2F!22F ,

F ` 2F (ne
essitation rule).

G�odel 
onsidered the translation t(F) of an intuitionisti
 formula F into the 
lassi
al modal

language similar to the Orlov translation: \box ea
h subformula of F". Both apparently

5

A loophole in the foundations of 
onstru
tive logi
.

6

One of the oldest well-known problems in logi
.

7

A 
hallenge: new approa
hes were needed.

8

I.E. Orlov. \Iz
hislenie sovmesntosti predlozhenii" Matemati
heskii sbornik (i.e. \The 
al
ulus of 
ompat-

ibility of propositions", Mathemati
s of the USSR, Sbornik), v. 35 (1928), pp.263-286 (in Russian).
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onsidered su
h a translation to be a fair formalization of the Brouwer thesis

intuitionisti
 truth = provability:

Indeed, a 
onsistent substituting \provable" for \true" in the usual indu
tive de�nition the

truth of a logi
al formula F leads to t(F). G�odel established that

Int ` F ) S4 ` t(F);

thus providing an exa
t reading of the Int formulas as statements about provability in 
lassi
al

mathemati
s. He 
onje
tured that the 
onverse ( also holds. This 
onje
ture was eventually


on�rmed in 1948 by M
Kinsey and Tarski. However, the ultimate goal of de�ning Int via the

notion of a proof in 
lassi
al mathemati
s had not been a
hieved be
ause S4 was left without

an exa
t intended semanti
s of the provability operator 2.

Int ,! S4 ,! : : : ? : : : ,! REAL PROOFS

By REAL PROOFS here we understand any rigorously de�ned system of proofs in suÆ
iently

ri
h formal mathemati
al theories. In parti
ular, we expe
t su
h a system to be represented

by a binary predi
ate Proof(p,F) (a shorthand for \p is a proof of F") satisfying the minimal

BHK requirements above. Model 
ase: the standard proof predi
ate Proof (x; y) in the �rst

order arithmeti
 PA denoting the de
idable relation \x is the 
ode of a proof of the formula

having a 
ode y".

G�odel himself was the �rst who addressed the issue of provability semanti
s for S4 and

�gured out that there was a problem there. He pointed out that the straightforward reading

of 2F as Provable(F) 
ontradi
ted his in
ompleteness theorem.

Let ? be the boolean 
onstant false; then the S4-axiom 2? ! ? 
orresponds to the

statement Consis PA, expressing 
onsisten
y of PA. By ne
essitation, S4 derives 2(2?!

?). The latter formula expresses the assertion that Consis PA is provable in PA, whi
h

is false a

ording to the se
ond G�odel in
ompleteness theorem.

The issue of the intended provability semanti
s for S4 was addressed by Lemmon (1957),

Kripke (1963), Montague (1963), Mints (1974), Kuznetsov & Muravitsky (1977), Goldblatt

(1978), Boolos (1979, 1993), Buss (1990), Artemov (1990), and many others. However, the

problem of �nding an adequate provability semanti
s for S4 remained open.

3 Expli
it vs. impli
it approa
hes

A problem with the reading S4 modality 2F as the formal provability predi
ate Provable(F)

was 
aused by the existential quanti�er over proofs in Provable(y). The latter is a shorthand

6



for 9xProof (x; y), where Proof (x; y) is the standard arithmeti
al formula saying \x is the


ode of a proof of a formula with the 
ode y". In a given model of arithmeti
 the formula

9xProof (x; F ) does not ne
essarily mean the existen
e of a proof of F . An element that

instantiates the existential quanti�er may be nonstandard. In that 
ase 9xProof (x; F ) is true

in the model, but there is no \real" PA-derivation behind su
h an x. This explains why the

re
e
tion prin
iple Provable(F )! F is not derivable in PA: the formula Provable(F ) does

not deliver a \real" proof of F .

On the other hand, the expli
it re
e
tion

Proof (n; F ) ! F

for ea
h natural number n is internally provable. Indeed, if Proof (n; F ) holds, then F is

provable. If Proof (n; F ) does not hold then its negation :Proof (n; F ) is provable, sin
e

Proof (x; y) is a de
idable relation. In both 
ases Proof (n; F )!F is provable.

This 
onsideration suggests the idea of introdu
ing a kind of expli
it provability logi


by swit
hing from the formulas 9xProof (x; F ) to the formulas Proof(t,F) and repla
ing the

existential quanti�er on proofs in the former by Skolem style operations on proofs in the latter.

The usual Skolem te
hnique, however, does not work here, sin
e one 
annot move quanti�ers

o� the s
ope of the provability operator.

Some of these operations appeared in the proof of G�odel's se
ond in
ompleteness theorem.

Within that proof in order to establish what are now known as Hilbert-Bernays-L�ob

derivability 
onditions one 
onstru
ts 
omputable fun
tions m(x; y) and 
(x) su
h that

PA ` Proof (s; F!G) ^ Proof (t; F ) ! Proof (m(s; t); G);

PA ` Proof (t; F )! Proof (
(t);Proof (t; F )).

Later in the proof these fa
ts were relaxed to their simpli�ed versions

PA ` Provable(F ! G) ^ Provable(F ) ! Provable(G);

PA ` Provable(F )! Provable(Provable(F ));

suÆ
ient to establish the in
ompleteness theorem.

In one of his le
tures in 1938 (�rst published in 1995) G�odel mentioned the possibility of

building an expli
it version of S4 with basi
 propositions \t is a proof of F" (t : F in the

modern notation) and thus getting a semanti
s of proofs for Int. Though neither de�nitions

nor axiomatization were given, G�odel's suggestion spe
i�ed the format t : F of an expe
ted

solution of the provability semanti
s problem for S4 and for the BHK problem

9

. It turned

out that one more operation on proofs is needed to 
apture the whole of G�odel's provability

logi
 S4.

9

The author began working on logi
s with the atoms \t is a proof of F" and dis
overed the Logi
 of Proofs

LP below before G�odel's paper of 1938-1995 be
ame known. The �rst papers by the author on the logi
s with

the atoms t : F but without operations on proofs appeared in 1992 (joint work with T. Strassen). An early

version of Logi
 of Proofs was �nished during author's extended visit to the Amsterdam University in the fall

of 1994. The system LP was �rst presented in 1994 at logi
 seminars in Amsterdam and M�unster.
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4 Proof polynomials and Logi
 of Proofs

De�nition The language of Logi
 of Proofs (LP) 
ontains the usual language of 
lassi
al

propositional logi
 along with

proof variables x

0

; : : : ; x

n

; : : : and proof 
onstants a

0

; : : : ; a

n

; : : :,

fun
tion symbols ! (monadi
), � and + (binary),

a formation symbol \:".

Proof terms in LP (
alled proof polynomials) are 
onstru
ted from variables and 
onstants

by the operations �;+; !. We shall denote proof polynomials by p; s; t; : : :. Formulas in LP are

built from the propositional atoms by the usual boolean 
onne
tives and by the new formation

rule: if t is a proof polynomial and F a formula, then t :F is a formula.

The intended semanti
s for p :F is p is a proof of F, whi
h will be formalized below. Note

that proof systems whi
h provide a formal semanti
s for p :F are multi-
on
lusion ones, i.e.

p may denote a proof of several di�erent F 's

10

.

De�nition The system LP along with the 
lassi
al propositional logi
 
ontains the axioms:

A1. t :F ! F \veri�
ation"

A2. t : (F ! G) ! (s :F ! (t�s) :G) \appli
ation"

A3. t :F ! !t : (t :F ) \proof 
he
ker"

A4. s :F ! (s+t) :F , t :F ! (s+t) :F \
hoi
e"

and the rule of inferen
e:

R. ` 
 :A if A is an axiom A0 - A4, and 
 a proof 
onstant \axiom ne
essitation".

A Constant Spe
i�
ation (CS) is a �nite set of formulas 


1

: A

1

; : : : ; 


n

: A

n

su
h that 


i

is

a 
onstant, and A

i

an axiom A0 { A4. Ea
h derivation in LP naturally generates the CS


onsisting of all formulas introdu
ed in this derivation by the axiom ne
essitation rule. Proof


onstants in LP stand for proofs of \simple fa
ts", namely propositional axioms and axiomsA1

{ A4. Proof 
onstants behave like atomi
 
onstant terms (
ombinators) of typed 
ombinatory

logi
. A 
onstant 


1

spe
i�ed as 


1

: (A!(B!A)) 
an be identi�ed with the 
ombinator k

A;B

of the type A!(B!A). A 
onstant 


2

su
h that 


2

: [(A!(B!C))! ((A!B)!(A!C))℄


orresponds to the 
ombinator s

A;B;C

of the type (A! (B!C)) ! ((A!B)! (A!C)).

The proof variables may be regarded as term variables of 
ombinatory logi
 and the operation

10

The di�eren
e between single 
on
lusion and multi-
on
lusion proof systems is mostly 
osmeti
. Usual

proof systems (Hilbert or Gentzen style) may be 
onsidered as single 
on
lusion ones if we assume that a proof

derives only the end formula (sequent) of a proof tree. On the other hand, the same systems may be regarded as

multi-
on
lusion by stipulating that a given proof derives all formulas assigned to the nodes of this proof tree.

The logi
 of stri
tly single 
on
lusion proof systems FLP also admits (V. Krupski) a 
omplete axiomatization.

FLP is not 
ompatible with the usual modal logi
. For example, in FLP the prin
iple t :A!:t : (A!A) holds.

The forgetful proje
tion of this prin
iple is 2A!:2(A!A) whi
h is in
onsistent with any normal system of

modal logi
. Therefore, stri
tly single 
on
lusion proof systems are not dire
tly relevant to the problem of a

provability semanti
s for S4. Provability as a modal operator 
orresponds to multi-
on
lusion proof systems.

8



\�" as the appli
ation of terms. In general an LP-formula t :F 
an be read as a 
ombinatory

term t of the type F . Typed 
ombinatory logi
 CL

!

thus 
orresponds to a fragment of LP


onsisting only of formulas of the sort t :F where t 
ontains no operations other than \�" and

F is a formula built from the propositional letters by \!" only.

There is no restri
tion on the 
hoi
e of a 
onstant 
 in R within a given derivation. In

parti
ular, R allows us to introdu
e a formula 
 :A(
), or to spe
ify a 
onstant several times

as a proof of di�erent axioms from A0 { A4.

The following 
onstru
tive form of the ne
essitation rule is admissible in LP:

` F ) ` p :F for some proof polynomial p

Here p is nothing but the blueprint of a given derivation of F in LP. Therefore LP is a

propositional system 
apable of internalizing its own proofs.

No single operator \t : " in LP is a modality sin
e none of them satis�es the property

t : (P!Q)! (t :P ! t :Q). This makes LP essentially di�erent from polymodal logi
s where

the modality is upgraded by some additional features. In LP the modality is de
omposed into

a family of proof polynomials.

5 Solution of G�odel's problem and the propositional 
lassi
al

BHK problem

Under the standard provability interpretation of LP proof polynomials are evaluated by nat-

ural numbers, a formula t :F is evaluated as Proof (t

�

; pF

�

q), where Proof(x,y) is any multi-


on
lusion proof predi
ate in PA, t

�

and F

�

are the evaluations of t and F respe
tively, pGq

is the G�odel number of G. The operations \�" and \!" are interpreted as G�odel's operations

a(x; y) and 
(x) respe
tively. The operation s+ t is an analogue of a 
on
atenation of s and

t, whi
h is assumed to be present for a given proof predi
ate Proof(x,y).

De�nition Let CS be a 
onstant spe
i�
ation. An interpretation respe
ts CS if all formulas

from CS are valid under this interpretation.

Completeness theorem for LP

11

F is derivable in LP with a


onstant spe
i�
ation CS , F is valid for any interpretation that respe
ts CS

The 
ompleteness theorem says that LP 
ontains all the logi
al tautologies 
on
erning proof

polynomials. In the above notations

LP ,! REAL PROOFS

11

I found the �rst version of the 
ompleteness theorem 
on
erning some 
all-by-name semanti
s for LP in

1994. In 1998 I established the 
ompleteness theorem for the 
all-by-value semanti
s above.

9



It is easy to see that the forgetful proje
tion of LP is 
orre
t with respe
t to S4. Indeed,

substituting 2 for all o

urren
es of \t : " 
onverts ea
h LP derivation into a S4 derivation.

A mu
h less trivial fa
t is that LP suÆ
es to realize any S4 theorem.

De�nition By an LP-realization of a modal formula F we mean an assignment of proof

polynomials to all o

urren
es of the modality in F . Let F

r

be the image of F under a

realization r.

In a provability 
ontext 2F is intuitively understood as \there exists a proof x of F". After

a skolemization, all negative o

urren
es of 2 produ
e arguments of Skolem fun
tions,

whereas positive ones give fun
tions of those arguments. For example, 2A! 2B should

be read informally as

9x \ x is a proof of A"! 9y \ y is a proof of B";

with the Skolem form

\ x is a proof of A"! \ f(x) is a proof of B":

The following de�nition 
aptures this feature.

De�nition A realization r is normal if all negative o

urren
es of 2 are realized by proof

variables.

Realization theorem

12

If S4 ` F , then LP ` F

r

for some normal realization r.

It was not a priori 
lear how to build su
h a realization. Indeed, the naive indu
tion on a

derivation in S4 fails: if A!B is realizable and A is realizable then we still 
annot 
on
lude

that B is realizable sin
e those two o

urren
es of A may well have di�erent realizations. In

fa
t it takes an iterative pro
edure whi
h operates with the whole derivation of F in S4 to


onstru
t su
h a realization.

Here is an example whi
h demonstrates the 
hoi
e operation \+" at work. We �rst 
onsider

a derivation in S4 of the formula (2A_2B)! 2(A_B):

1. A! (A_B), B ! (A_B) propositional axioms

2. 2(A! A_B), 2(B ! A_B) from 1, by Ne
essitation

3. 2(A! A_B)! (2A! 2(A_B)), 2(B ! A_B)! (2B ! 2(A_B)) S4 axioms

4. 2A! 2(A_B), 2B ! 2(A_B) from 2 and 3

5. (2A_2B)! 2(A_B) from 4, by propositional logi


In LP the 
orresponding derivation is

1. A! A_B; B ! A_B by A0,

2. a : (A! A _B); b : (B ! A _B) by R,

12

The author, 1994
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3. x :A! (a�x) : (A_B); y :B ! (b�y) : (A_B) from 2, by A2,

4. (a�x) : (A_B)! (a�x+b�y) : (A_B); (b�y) : (A_B)! (a�x+b�y) : (A_B) by A4,

5. (x :A _ y :B)! (a�x+b�y) : (A_B) from 4, by propositional logi
.

S4 may be 
onsidered as a higher level language on the top of LP. A general re
ipe for

using S4 as a provability logi
 might be the following: derive in S4 and then translate the

result into LP to re
over its provability meaning.

The Realization theorem above links S4 and LP thus 
onne
ting the 
hain of exa
t em-

beddings

Int ,! S4 ,! LP ,! REAL PROOFS

De�nition A modal formula is proof realizable if there is a realization of it by proof polyno-

mials valid in arithmeti
.

Corollary 1. (G�odel's problem of provability semanti
s for S4).

A modal formula is proof realizable if and only if it is derivable in S4.

We believe there is a suÆ
ient eviden
e that here we have \the solution" rather than \a

solution" to the problem. Godel in 1938 introdu
ed the LP format for understanding S4.

Given this format proof polynomials appear as the minimal system of proof terms suÆ
ient

for realization of all operations on proofs that 
an be spe
i�ed by a propositional 
ondition.

In turn, the proof polynomials 
ompletely determine the axiom system for LP, whi
h is

substantiated by the 
ompleteness theorem above.

De�nition A propositional formula F is proof realizable if the 
orresponding modal formula

t(F ) is proof realizable.

Corollary 2. (The 
lassi
al BHK problem for propositional logi
).

A propositional formula is proof realizable i� it is derivable in Int

In what sense proof realizability of the propositional language meets the requirements to a

formal BHK semanti
s? Firstly, the proof realizability semanti
s is BHK 
ompliant. Indeed,

by the axiom A2 of LP a proof polynomial realizing A!B a
ts as an operation that given

a proof of A returns a proof of B. A proof realizer of A ^ B yields proofs of both A and B.

A proof realizer of A _ B produ
es either a proof realizer of A or a proof realizer of B. The

latter is supported by the fa
t that

S4 ` 2(A _B)! (2A _2B)

for allA andB pre�xed by 2, and by its expli
it version in LP. Se
ondly, the proof realizability

semanti
s is based on real proof systems, it is not 
ir
ular, and it provides an exa
t spe
i�
ation

of Int.

11



We wish to think that here we also have \the solution" rather than \the �rst solution"

to the problem. G�odel's (and Orlov's) translation is nothing but the straightforward 
las-

si
al formalization of Brouwer's suggestion to understand intuitionisti
 truth as provability.

Therefore Int is a de�nable fragment of S4. Sin
e proof polynomials provide the intended

provability semanti
s for S4 they do the same for Int as well.

6 First order 
ase

Theories based on the �rst order S4 were studied by Hintikka, Mints, Myhill, Goodman,

H. Friedman, Flagg, S
edrov, S. Shapiro, and others.

In the �rst order logi
 of proofs 
onstants and proof letters depend on individual variables:

u(~x); 
(~x); : : : and are interpreted as provably re
ursive arithmeti
al terms. Here are some

examples of valid prin
iples a

ompanied by their plain modal proje
tions.


(y) : (8xA(x)!A(y)) 2(8xA(x)!A(y))

u :8xA(x)!(
(y) � u) :A(y) 28xA(x)!2A(y)

u :8xA(x)!8y((
(y) � u) :A(y)) 28xA(x)!8y2A(y)

In a re
ent joint paper with Tanya Sidon-Yavorskaya we have shown that the �rst order logi


of proofs is hyperarithmeti
al (in fa
t, �

0

1

(TA) 
omplete). In parti
ular, this means that

su
h logi
 does not admit a 
omplete axiomatization. Similar results hold for the fragment of

the �rst order logi
 of proofs with 
onstants and proof variables not depending on individual

variables.

7 Dis
ussion

LP is an advan
ed system of 
ombinatory logi
 that a

ommodates not only the \appli
ation"

operation, but also \proof 
he
ker" and \
hoi
e". These operations subsume the simply typed

�-
al
ulus together with the modal logi
 S4, and thus the whole of modal �-
al
ulus. In

parti
ular, LP 
reates the environment where modality and �-terms are obje
ts of the same

nature, namely proof polynomials. Another way to look at it: modal logi
 is a forgetful

proje
tion of the typed 
ombinatory logi
 enri
hed by the operations \proof 
he
ker" and

\
hoi
e".

There was a major diÆ
ulty standing in the way of presenting modality via a system

of terms: su
h a presentation should be self-referential and a

ommodate types 
ontaining

terms of any type, in
luding its own, for example, x : F (x). The 
hoi
e of the 
ombinatory

logi
 format for LP versus the obvious �-term one in fa
t allows us to 
ome with the 
on
ise

representation of this self-referentiality. The natural �-term system doing the same job would

require an in�nite supply of new term 
onstru
tors and is less manageable.
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The realization of S4 in LP provides a fresh look at modal logi
 and its appli
ations in

general. Proof polynomials reveal the dynami
 
hara
ter of modality. In re
ent papers by

V. Brezhnev, E. Kazakov, D. Shapiro and the author expli
it 
ounterparts of the modal logi
s

K, K4, and S5 were found and supplied with the provability semanti
s.

Su
h areas as modal �-
al
uli, polymorphi
 se
ond order �-
al
uli, �-
al
uli with types

depending on terms, non-deterministi
 �-
al
uli, et
., 
ould bene�t from semanti
s similar to

the one delivered by LP.

Gabbay's Labelled Dedu
tive Systems may serve as a natural framework for LP. Intuition-

isti
 Type Theory by Martin-L�of also makes use of the format t :F with its informal provability

reading. LP may also be regarded as a basi
 epistemi
 logi
 with expli
it justi�
ations; a

problem of �nding su
h systems was raised by van Benthem.

The studies of the modal logi
s of formal provability (Solovay's systems GL, S, et
.) have

given a valuable experien
e in arithmeti
al self-referential semanti
s for a variety of logi
al

languages. Neither 
ompleteness theorem nor realization theorem above apply results or

te
hnique of the formal provability logi
s. However a substantial methodologi
al in
uen
e of

those studies on the logi
s of expli
it provability is undeniable.
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