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Abstrat

Is there an alternative mathematis? In partiular, does intuitionism yield an essen-

tially new approah that annot be spei�ed within lassial mathematis? The intended

informal meaning of intuitionisti logi Int was given in the 1930s by the Brouwer-Heyting-

Kolmogorov semantis whih understands intuitionisti truth as provability. Moreover,

Kolmogorov (and later G�odel) suggested interpreting Int via lassial provability and

thus providing a meaningful semantis for Int independent of intuitionisti assumptions.

Natural attempts to formalize this semantis met serious diÆulties related to G�odel's

inompleteness phenomenon. In this leture we will talk about reent advanes in this

area that have bridged the inompleteness gap and provided an adequate formalization of

the propositional Brouwer-Heyting-Kolmogorov semantis based on lassial provability.

Plan

1. Brouwer - Heyting - Kolmogorov provability semantis for intuitionisti logi

2. De�ning intuitionisti logi in lassial provability logi

3. Expliit vs. impliit approahes

4. Proof polynomials and Logi of Proofs

5. Solution of G�odel's problem and the propositional BHK problem

6. First order ase

7. Disussion
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1 Brouwer - Heyting - Kolmogorov provability semantis for

intuitionisti logi

Aording to Brouwer (1907 and 1918), intuitionisti truth means provability. Here is a sum-

mary in this issue taken from A. Troelstra and D. van Dalen Construtivism in Mathematis.

An Introdution, v. 1 (1988). page 4.

\It does not make sense to think of truth or falsity of a mathematial statement indepen-

dently of our knowledge onerning the statement. A statement is true if we have a proof

of it, and false if we an show that the assumption that there is a proof for the statement

leads to a ontradition."

In 1931-32 Heyting and Kolmogorov made Brouwer's de�nition of intuitionisti truth expliit,

though informal, by introduing what is now known as Brouwer-Heyting-Kolmogorov (BHK)

semantis. Now BHK semantis is widely reognized as the intended semantis for intuitionis-

ti logi Int

1

. Aording to BHK a statement is true if it has a proof, and a proof of a logially

ompound statement is given in terms of the proofs of its omponents. The desription uses

the unexplained primitive notions of onstrution and proof. It stipulates that

� a proof of a proposition A^B onsists of a proof of A and a proof of B,

� a proof of A_B is given by presenting either a proof of A or a proof of B

2

,

� a proof of A!B is a onstrution whih, given a proof of A returns a proof of B,

� absurdity ? is a proposition whih has no proof and a proof of :A is a onstrution

whih, given a proof of A, would return a proof of ?.

Here are minimal a priori requirements to a formal BHK semantis for intuitionisti logi.

1. It should be based on real proofs in a ertain bakground formal theory (or a lass of

theories). In partiular,

1

In this talk by Int we understand intuitionisti propositional logi also known as IPC. The provability se-

mantis problem for Int was entral in the papers A. Kolmogoro�, \Zur Deutung der intuitionistishen Logik."

- Mathematishe Zeitshrift, v. 35 (1932), pp. 58-65 and K. G�odel, \Eine Interpretation des intuitionistishen

Aussagenkalkuls", Ergebnisse eines mathematishen Kolloquiums, v. 4 (1933), p. 39-40.

2

Nowhere in the original Heyting or Kolmogorov writings ould I �nd the well-known extra ondition on

the disjuntion: a proof of a disjuntion should also speify whih one of the disjunts it is a proof of. This

ondition is learly redundant for the usual notion of a proof: sine the prediate \p is a proof of F" is deidable

given a proof p we always know whih one of the disjunts p is a proof of. Kreisel (1965) suggested some further

modi�ations of the BHK semantis. In our talk we onsider the original BHK formulation by Heyting and

Kolmogorov.
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a) the prediate Proof(p,F) meaning \p is a BHK proof of F" should be deidable,

b) BHK proofs should enumerate theorems of the bakground theory T , i.e.

T ` F , Proof(p,F) for some p

2. It should be non-irular. For example, BHK proofs should not be derivations in a

formal system based on Int itself.

Until reently there were no sound semantis for Int suggested whih met these minimal

BHK requirements. Dirk van Dalen in the hapter \Intuitionisti Logi" in Handbook of

Philosophial Logi, v. 3. (1986), p. 243, writes:

\The intended interpretation of intuitionisti logi as presented by Heyting, Kreisel and

others

3

so far has proved to be rather elusive. ... However, ever sine Heyting's formal-

ization, various, more or less arti�ial, semantis have been proposed."

There is an important distintion between Heyting's and Kolmogorov's desriptions of the

BHK semantis. Despite strong tehnial similarities their approahes had fundamentally

di�erent objetives. Presumably, Heyting explained Int in terms of the intuitionisti under-

standing of onstrutions and proofs. Kolmogorov in 1932 (and then G�odel in 1933 and 1938)

intended to interpret intuitionisti logi on the basis of the usual mathematial notion of proof

(problem solution), and thus to provide a de�nition of Int within lassial mathematis in-

dependent of the intuitionisti assumptions. For purposes of formalization of BHK semantis

it is important to distinguish between Heyting and Kolmogorov - G�odel interpretations. We

will use the names intuitionisti BHK semantis for the former and lassial BHK semantis

for the latter. In this talk we will be interested in the lassial BHK semantis.

Intuitionistially aeptable semantis for the intuitionisti logi was studied by Kreisel,

Kripke, Dyson, van Dalen, Leivant, Veldman, de Swart, Dummet, Troelstra, H. Friedman,

Visser, and others. Those studies met onsiderable tehnial diÆulties (f. D. van Dalen's

hapter \Intuitionisti Logi" in Handbook of Philosophial Logi, v. 3. (1986)). To the best

of our knowledge none of the suggested interpretations satis�es the minimal requirements to

a formal BHK semantis above.

Here is the list of major known lassial semantis for intuitionisti logi.

1. Algebrai semantis (Birkho�, 1935)

2. Topologial semantis (Stone, 1937; Tarski, 1938)

3. Realizability semantis (Kleene, 1945)

4. Beth models (1956)

5. Dialetia Interpretation (G�odel, 1958)

6. Curry - Howard isomorphism (1958)

3

I.e. the BHK semantis. { S.A.
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7. Medvedev's logi of problems (1962)

8. Kripke models (1965)

9. Kuznetsov - Muravitsky - Goldblatt - Boolos provability interpretation (1976)

10. Categorial semantis (Goldblatt, 1979)

Those interpretations have shown to be extremely fruitful for understanding intuitionisti

logi. However, none of them may be onsidered as a BHK type semantis.

Semantis 1 { 5, 7, 8, 10 are not onneted to provability. In partiular, Kleene realizability

provides a omputational but not provability semantis of intuitionisti logi

4

. Indeed, the

prediate \x realizes F" is not deidable, Kleene realizers do not enumerate theorems of any

formal theory. It is also worth of mentioning that Kleene realizability is not an adequate

semantis for Int, i.e. there are realizable propositional formulas not derivable in Int.

Curry - Howard isomorphism transliterates natural derivations in Int to the orresponding

�-terms. This is a powerful devie onneting proofs and programs whih may be regarded

as a sort of a omputational semantis for Int. However, its foundational signi�ane is

rather limited. From the BHK point of view Curry - Howard isomorphism provides the trivial

semantis whih de�nes \F is intuitionistially true" as \F is derivable in Int" and therefore

is obviously irular.

Kuznetsov - Muravitsky - Goldblatt - Boolos semantis for Int translates a propositional

formula F into F

�

by pre�xing all atoms and all impliations in F by the modal operator

2 (MKinsey - Tarski translation) and then deodes 2A as \A and Provable(A)" where

Provable is the prediate of formal provability in the �rst order arithmeti PA. Int is known

to be sound and omplete with respet to this semantis. This semantis, however, is highly

nononstrutive sine it appeals to the unrestrited notion of lassial truth for arithmetial

formulas. For example, it stipulates that A^B is intuitionistially true i� A and B are both

lassially true and provable in PA. In addition, it has nothing to do with BHK sine there

are no individual proofs and operations on proofs present whatsoever.

An attempt to formalize BHK semantis diretly was made by Kreisel in 1962 and 1965

in his theory of onstrutions. Kreisel's original variant of the theory turned out to be inon-

sistent, and the problem ourred already at the propositional level. Goodman (1970) �xed

that gap but his solution involved a strati�ation of onstrutions into levels whih ruined the

BHK harater of this semantis. In partiular, a proof of A!B was no longer a funtion that

ould be applied to any proof of A. A omprehensive aount of Kreisel - Goodman theory

ould by found in the paper by S. Weinstein, \The intended interpretation of intuitionisti

logi", Journal of Philosophial Logi, v. 12 (1983), pp. 261-270, whih onludes that

\The interpretation of intuitionisti theories in terms of the notions of proof and onstru-

tion ... has yet, however, failed to reeive a de�nitive formulation."

4

Kleene himself denied any onnetion of his realizability with BHK interpretation.
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In this talk we will demonstrate that the propositional lassial BHK semantis admits an

exat mathematial formalization, whih indeed provides an adequate spei�ation of Int on

the basis of the usual lassial notion of proof independent of any intuitionisti assumptions.

This solves the problem studied by Kolmogorov (1932) and G�odel (1933).

Along with the obvious foundational

5

, historial

6

and mathematial

7

motivations for tak-

ling this problem, I would like to mention two more.

1. Modal logi and �-terms provide two parallel languages desribing provability. Modality

permits iterations, �-terms are expliit and more informative. Why don't we try to do

both?

2. There is a number of questions in modal logi, typed theories, knowledge representation,

onstrutive semantis, theory of veri�ation, et. related to the notion of probability,

whih have not been addressed by the traditional theory of formal (impliit) provability.

2 De�ning intuitionisti logi in lassial provability logi

Perhaps, the �rst paper on formal provability semantis for intuitionisti logi was written

in 1928 by Orlov in Russian

8

. Referring to Brouwer's papers on intuitionism he suggested

pre�xing all subformulas of a given propositional intuitionisti formula by 2 with the informal

reading of 2F as \F is provable", and understanding the logial onnetives in the usual

lassial way. His modal axioms for provability oinide with the G�odel axioms for the modal

logi S4 (1933), though Orlov's system was weaker than S4 beause he hose a ertain proper

fragment of lassial logi on the bakground.

G�odel in 1933 independently introdued the modal alulus of provability (whih turned

out to be another axiomatization of one of the Lewis modal systems S4) and de�ned Int in

this logi. G�odel's provability logi admits all axioms and rules of lassial logi and has the

modal axioms and rules

2F!F ,

2(F!G)!(2F!2G),

2F!22F ,

F ` 2F (neessitation rule).

G�odel onsidered the translation t(F) of an intuitionisti formula F into the lassial modal

language similar to the Orlov translation: \box eah subformula of F". Both apparently

5

A loophole in the foundations of onstrutive logi.

6

One of the oldest well-known problems in logi.

7

A hallenge: new approahes were needed.

8

I.E. Orlov. \Izhislenie sovmesntosti predlozhenii" Matematiheskii sbornik (i.e. \The alulus of ompat-

ibility of propositions", Mathematis of the USSR, Sbornik), v. 35 (1928), pp.263-286 (in Russian).
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onsidered suh a translation to be a fair formalization of the Brouwer thesis

intuitionisti truth = provability:

Indeed, a onsistent substituting \provable" for \true" in the usual indutive de�nition the

truth of a logial formula F leads to t(F). G�odel established that

Int ` F ) S4 ` t(F);

thus providing an exat reading of the Int formulas as statements about provability in lassial

mathematis. He onjetured that the onverse ( also holds. This onjeture was eventually

on�rmed in 1948 by MKinsey and Tarski. However, the ultimate goal of de�ning Int via the

notion of a proof in lassial mathematis had not been ahieved beause S4 was left without

an exat intended semantis of the provability operator 2.

Int ,! S4 ,! : : : ? : : : ,! REAL PROOFS

By REAL PROOFS here we understand any rigorously de�ned system of proofs in suÆiently

rih formal mathematial theories. In partiular, we expet suh a system to be represented

by a binary prediate Proof(p,F) (a shorthand for \p is a proof of F") satisfying the minimal

BHK requirements above. Model ase: the standard proof prediate Proof (x; y) in the �rst

order arithmeti PA denoting the deidable relation \x is the ode of a proof of the formula

having a ode y".

G�odel himself was the �rst who addressed the issue of provability semantis for S4 and

�gured out that there was a problem there. He pointed out that the straightforward reading

of 2F as Provable(F) ontradited his inompleteness theorem.

Let ? be the boolean onstant false; then the S4-axiom 2? ! ? orresponds to the

statement Consis PA, expressing onsisteny of PA. By neessitation, S4 derives 2(2?!

?). The latter formula expresses the assertion that Consis PA is provable in PA, whih

is false aording to the seond G�odel inompleteness theorem.

The issue of the intended provability semantis for S4 was addressed by Lemmon (1957),

Kripke (1963), Montague (1963), Mints (1974), Kuznetsov & Muravitsky (1977), Goldblatt

(1978), Boolos (1979, 1993), Buss (1990), Artemov (1990), and many others. However, the

problem of �nding an adequate provability semantis for S4 remained open.

3 Expliit vs. impliit approahes

A problem with the reading S4 modality 2F as the formal provability prediate Provable(F)

was aused by the existential quanti�er over proofs in Provable(y). The latter is a shorthand
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for 9xProof (x; y), where Proof (x; y) is the standard arithmetial formula saying \x is the

ode of a proof of a formula with the ode y". In a given model of arithmeti the formula

9xProof (x; F ) does not neessarily mean the existene of a proof of F . An element that

instantiates the existential quanti�er may be nonstandard. In that ase 9xProof (x; F ) is true

in the model, but there is no \real" PA-derivation behind suh an x. This explains why the

reetion priniple Provable(F )! F is not derivable in PA: the formula Provable(F ) does

not deliver a \real" proof of F .

On the other hand, the expliit reetion

Proof (n; F ) ! F

for eah natural number n is internally provable. Indeed, if Proof (n; F ) holds, then F is

provable. If Proof (n; F ) does not hold then its negation :Proof (n; F ) is provable, sine

Proof (x; y) is a deidable relation. In both ases Proof (n; F )!F is provable.

This onsideration suggests the idea of introduing a kind of expliit provability logi

by swithing from the formulas 9xProof (x; F ) to the formulas Proof(t,F) and replaing the

existential quanti�er on proofs in the former by Skolem style operations on proofs in the latter.

The usual Skolem tehnique, however, does not work here, sine one annot move quanti�ers

o� the sope of the provability operator.

Some of these operations appeared in the proof of G�odel's seond inompleteness theorem.

Within that proof in order to establish what are now known as Hilbert-Bernays-L�ob

derivability onditions one onstruts omputable funtions m(x; y) and (x) suh that

PA ` Proof (s; F!G) ^ Proof (t; F ) ! Proof (m(s; t); G);

PA ` Proof (t; F )! Proof ((t);Proof (t; F )).

Later in the proof these fats were relaxed to their simpli�ed versions

PA ` Provable(F ! G) ^ Provable(F ) ! Provable(G);

PA ` Provable(F )! Provable(Provable(F ));

suÆient to establish the inompleteness theorem.

In one of his letures in 1938 (�rst published in 1995) G�odel mentioned the possibility of

building an expliit version of S4 with basi propositions \t is a proof of F" (t : F in the

modern notation) and thus getting a semantis of proofs for Int. Though neither de�nitions

nor axiomatization were given, G�odel's suggestion spei�ed the format t : F of an expeted

solution of the provability semantis problem for S4 and for the BHK problem

9

. It turned

out that one more operation on proofs is needed to apture the whole of G�odel's provability

logi S4.

9

The author began working on logis with the atoms \t is a proof of F" and disovered the Logi of Proofs

LP below before G�odel's paper of 1938-1995 beame known. The �rst papers by the author on the logis with

the atoms t : F but without operations on proofs appeared in 1992 (joint work with T. Strassen). An early

version of Logi of Proofs was �nished during author's extended visit to the Amsterdam University in the fall

of 1994. The system LP was �rst presented in 1994 at logi seminars in Amsterdam and M�unster.

7



4 Proof polynomials and Logi of Proofs

De�nition The language of Logi of Proofs (LP) ontains the usual language of lassial

propositional logi along with

proof variables x

0

; : : : ; x

n

; : : : and proof onstants a

0

; : : : ; a

n

; : : :,

funtion symbols ! (monadi), � and + (binary),

a formation symbol \:".

Proof terms in LP (alled proof polynomials) are onstruted from variables and onstants

by the operations �;+; !. We shall denote proof polynomials by p; s; t; : : :. Formulas in LP are

built from the propositional atoms by the usual boolean onnetives and by the new formation

rule: if t is a proof polynomial and F a formula, then t :F is a formula.

The intended semantis for p :F is p is a proof of F, whih will be formalized below. Note

that proof systems whih provide a formal semantis for p :F are multi-onlusion ones, i.e.

p may denote a proof of several di�erent F 's

10

.

De�nition The system LP along with the lassial propositional logi ontains the axioms:

A1. t :F ! F \veri�ation"

A2. t : (F ! G) ! (s :F ! (t�s) :G) \appliation"

A3. t :F ! !t : (t :F ) \proof heker"

A4. s :F ! (s+t) :F , t :F ! (s+t) :F \hoie"

and the rule of inferene:

R. `  :A if A is an axiom A0 - A4, and  a proof onstant \axiom neessitation".

A Constant Spei�ation (CS) is a �nite set of formulas 

1

: A

1

; : : : ; 

n

: A

n

suh that 

i

is

a onstant, and A

i

an axiom A0 { A4. Eah derivation in LP naturally generates the CS

onsisting of all formulas introdued in this derivation by the axiom neessitation rule. Proof

onstants in LP stand for proofs of \simple fats", namely propositional axioms and axiomsA1

{ A4. Proof onstants behave like atomi onstant terms (ombinators) of typed ombinatory

logi. A onstant 

1

spei�ed as 

1

: (A!(B!A)) an be identi�ed with the ombinator k

A;B

of the type A!(B!A). A onstant 

2

suh that 

2

: [(A!(B!C))! ((A!B)!(A!C))℄

orresponds to the ombinator s

A;B;C

of the type (A! (B!C)) ! ((A!B)! (A!C)).

The proof variables may be regarded as term variables of ombinatory logi and the operation

10

The di�erene between single onlusion and multi-onlusion proof systems is mostly osmeti. Usual

proof systems (Hilbert or Gentzen style) may be onsidered as single onlusion ones if we assume that a proof

derives only the end formula (sequent) of a proof tree. On the other hand, the same systems may be regarded as

multi-onlusion by stipulating that a given proof derives all formulas assigned to the nodes of this proof tree.

The logi of stritly single onlusion proof systems FLP also admits (V. Krupski) a omplete axiomatization.

FLP is not ompatible with the usual modal logi. For example, in FLP the priniple t :A!:t : (A!A) holds.

The forgetful projetion of this priniple is 2A!:2(A!A) whih is inonsistent with any normal system of

modal logi. Therefore, stritly single onlusion proof systems are not diretly relevant to the problem of a

provability semantis for S4. Provability as a modal operator orresponds to multi-onlusion proof systems.
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\�" as the appliation of terms. In general an LP-formula t :F an be read as a ombinatory

term t of the type F . Typed ombinatory logi CL

!

thus orresponds to a fragment of LP

onsisting only of formulas of the sort t :F where t ontains no operations other than \�" and

F is a formula built from the propositional letters by \!" only.

There is no restrition on the hoie of a onstant  in R within a given derivation. In

partiular, R allows us to introdue a formula  :A(), or to speify a onstant several times

as a proof of di�erent axioms from A0 { A4.

The following onstrutive form of the neessitation rule is admissible in LP:

` F ) ` p :F for some proof polynomial p

Here p is nothing but the blueprint of a given derivation of F in LP. Therefore LP is a

propositional system apable of internalizing its own proofs.

No single operator \t : " in LP is a modality sine none of them satis�es the property

t : (P!Q)! (t :P ! t :Q). This makes LP essentially di�erent from polymodal logis where

the modality is upgraded by some additional features. In LP the modality is deomposed into

a family of proof polynomials.

5 Solution of G�odel's problem and the propositional lassial

BHK problem

Under the standard provability interpretation of LP proof polynomials are evaluated by nat-

ural numbers, a formula t :F is evaluated as Proof (t

�

; pF

�

q), where Proof(x,y) is any multi-

onlusion proof prediate in PA, t

�

and F

�

are the evaluations of t and F respetively, pGq

is the G�odel number of G. The operations \�" and \!" are interpreted as G�odel's operations

a(x; y) and (x) respetively. The operation s+ t is an analogue of a onatenation of s and

t, whih is assumed to be present for a given proof prediate Proof(x,y).

De�nition Let CS be a onstant spei�ation. An interpretation respets CS if all formulas

from CS are valid under this interpretation.

Completeness theorem for LP

11

F is derivable in LP with a

onstant spei�ation CS , F is valid for any interpretation that respets CS

The ompleteness theorem says that LP ontains all the logial tautologies onerning proof

polynomials. In the above notations

LP ,! REAL PROOFS

11

I found the �rst version of the ompleteness theorem onerning some all-by-name semantis for LP in

1994. In 1998 I established the ompleteness theorem for the all-by-value semantis above.
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It is easy to see that the forgetful projetion of LP is orret with respet to S4. Indeed,

substituting 2 for all ourrenes of \t : " onverts eah LP derivation into a S4 derivation.

A muh less trivial fat is that LP suÆes to realize any S4 theorem.

De�nition By an LP-realization of a modal formula F we mean an assignment of proof

polynomials to all ourrenes of the modality in F . Let F

r

be the image of F under a

realization r.

In a provability ontext 2F is intuitively understood as \there exists a proof x of F". After

a skolemization, all negative ourrenes of 2 produe arguments of Skolem funtions,

whereas positive ones give funtions of those arguments. For example, 2A! 2B should

be read informally as

9x \ x is a proof of A"! 9y \ y is a proof of B";

with the Skolem form

\ x is a proof of A"! \ f(x) is a proof of B":

The following de�nition aptures this feature.

De�nition A realization r is normal if all negative ourrenes of 2 are realized by proof

variables.

Realization theorem

12

If S4 ` F , then LP ` F

r

for some normal realization r.

It was not a priori lear how to build suh a realization. Indeed, the naive indution on a

derivation in S4 fails: if A!B is realizable and A is realizable then we still annot onlude

that B is realizable sine those two ourrenes of A may well have di�erent realizations. In

fat it takes an iterative proedure whih operates with the whole derivation of F in S4 to

onstrut suh a realization.

Here is an example whih demonstrates the hoie operation \+" at work. We �rst onsider

a derivation in S4 of the formula (2A_2B)! 2(A_B):

1. A! (A_B), B ! (A_B) propositional axioms

2. 2(A! A_B), 2(B ! A_B) from 1, by Neessitation

3. 2(A! A_B)! (2A! 2(A_B)), 2(B ! A_B)! (2B ! 2(A_B)) S4 axioms

4. 2A! 2(A_B), 2B ! 2(A_B) from 2 and 3

5. (2A_2B)! 2(A_B) from 4, by propositional logi

In LP the orresponding derivation is

1. A! A_B; B ! A_B by A0,

2. a : (A! A _B); b : (B ! A _B) by R,

12

The author, 1994
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3. x :A! (a�x) : (A_B); y :B ! (b�y) : (A_B) from 2, by A2,

4. (a�x) : (A_B)! (a�x+b�y) : (A_B); (b�y) : (A_B)! (a�x+b�y) : (A_B) by A4,

5. (x :A _ y :B)! (a�x+b�y) : (A_B) from 4, by propositional logi.

S4 may be onsidered as a higher level language on the top of LP. A general reipe for

using S4 as a provability logi might be the following: derive in S4 and then translate the

result into LP to reover its provability meaning.

The Realization theorem above links S4 and LP thus onneting the hain of exat em-

beddings

Int ,! S4 ,! LP ,! REAL PROOFS

De�nition A modal formula is proof realizable if there is a realization of it by proof polyno-

mials valid in arithmeti.

Corollary 1. (G�odel's problem of provability semantis for S4).

A modal formula is proof realizable if and only if it is derivable in S4.

We believe there is a suÆient evidene that here we have \the solution" rather than \a

solution" to the problem. Godel in 1938 introdued the LP format for understanding S4.

Given this format proof polynomials appear as the minimal system of proof terms suÆient

for realization of all operations on proofs that an be spei�ed by a propositional ondition.

In turn, the proof polynomials ompletely determine the axiom system for LP, whih is

substantiated by the ompleteness theorem above.

De�nition A propositional formula F is proof realizable if the orresponding modal formula

t(F ) is proof realizable.

Corollary 2. (The lassial BHK problem for propositional logi).

A propositional formula is proof realizable i� it is derivable in Int

In what sense proof realizability of the propositional language meets the requirements to a

formal BHK semantis? Firstly, the proof realizability semantis is BHK ompliant. Indeed,

by the axiom A2 of LP a proof polynomial realizing A!B ats as an operation that given

a proof of A returns a proof of B. A proof realizer of A ^ B yields proofs of both A and B.

A proof realizer of A _ B produes either a proof realizer of A or a proof realizer of B. The

latter is supported by the fat that

S4 ` 2(A _B)! (2A _2B)

for allA andB pre�xed by 2, and by its expliit version in LP. Seondly, the proof realizability

semantis is based on real proof systems, it is not irular, and it provides an exat spei�ation

of Int.
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We wish to think that here we also have \the solution" rather than \the �rst solution"

to the problem. G�odel's (and Orlov's) translation is nothing but the straightforward las-

sial formalization of Brouwer's suggestion to understand intuitionisti truth as provability.

Therefore Int is a de�nable fragment of S4. Sine proof polynomials provide the intended

provability semantis for S4 they do the same for Int as well.

6 First order ase

Theories based on the �rst order S4 were studied by Hintikka, Mints, Myhill, Goodman,

H. Friedman, Flagg, Sedrov, S. Shapiro, and others.

In the �rst order logi of proofs onstants and proof letters depend on individual variables:

u(~x); (~x); : : : and are interpreted as provably reursive arithmetial terms. Here are some

examples of valid priniples aompanied by their plain modal projetions.

(y) : (8xA(x)!A(y)) 2(8xA(x)!A(y))

u :8xA(x)!((y) � u) :A(y) 28xA(x)!2A(y)

u :8xA(x)!8y(((y) � u) :A(y)) 28xA(x)!8y2A(y)

In a reent joint paper with Tanya Sidon-Yavorskaya we have shown that the �rst order logi

of proofs is hyperarithmetial (in fat, �

0

1

(TA) omplete). In partiular, this means that

suh logi does not admit a omplete axiomatization. Similar results hold for the fragment of

the �rst order logi of proofs with onstants and proof variables not depending on individual

variables.

7 Disussion

LP is an advaned system of ombinatory logi that aommodates not only the \appliation"

operation, but also \proof heker" and \hoie". These operations subsume the simply typed

�-alulus together with the modal logi S4, and thus the whole of modal �-alulus. In

partiular, LP reates the environment where modality and �-terms are objets of the same

nature, namely proof polynomials. Another way to look at it: modal logi is a forgetful

projetion of the typed ombinatory logi enrihed by the operations \proof heker" and

\hoie".

There was a major diÆulty standing in the way of presenting modality via a system

of terms: suh a presentation should be self-referential and aommodate types ontaining

terms of any type, inluding its own, for example, x : F (x). The hoie of the ombinatory

logi format for LP versus the obvious �-term one in fat allows us to ome with the onise

representation of this self-referentiality. The natural �-term system doing the same job would

require an in�nite supply of new term onstrutors and is less manageable.
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The realization of S4 in LP provides a fresh look at modal logi and its appliations in

general. Proof polynomials reveal the dynami harater of modality. In reent papers by

V. Brezhnev, E. Kazakov, D. Shapiro and the author expliit ounterparts of the modal logis

K, K4, and S5 were found and supplied with the provability semantis.

Suh areas as modal �-aluli, polymorphi seond order �-aluli, �-aluli with types

depending on terms, non-deterministi �-aluli, et., ould bene�t from semantis similar to

the one delivered by LP.

Gabbay's Labelled Dedutive Systems may serve as a natural framework for LP. Intuition-

isti Type Theory by Martin-L�of also makes use of the format t :F with its informal provability

reading. LP may also be regarded as a basi epistemi logi with expliit justi�ations; a

problem of �nding suh systems was raised by van Benthem.

The studies of the modal logis of formal provability (Solovay's systems GL, S, et.) have

given a valuable experiene in arithmetial self-referential semantis for a variety of logial

languages. Neither ompleteness theorem nor realization theorem above apply results or

tehnique of the formal provability logis. However a substantial methodologial inuene of

those studies on the logis of expliit provability is undeniable.

13


