
Uni�ed Semantics for Modality and �-termsvia Proof Polynomials �Sergei N. Artemov yAbstractIt is shown that the modal logic S4, simple �-calculus and modal �-calculus admit arealization in a very simple propositional logical system LP , which has an exact provabilitysemantics. In LP both modality and �-terms become objects of the same nature, namely,proof polynomials. The provability interpretation of modal �-terms presented here maybe regarded as a system-independent generalization of the Curry-Howard isomorphism ofproofs and �-terms.1 IntroductionThe Logic of Proofs (LP , see Section 2) is a system in the propositional language with anextra basic proposition t :F for \t is a proof of F". LP is supplied with a formal provabilitysemantics, completeness theorems and decidability algorithms ([3], [4], [5]).In this paper it is shown that LP naturally encompasses �-calculi corresponding to intu-itionistic and modal logics, and combinatory logic. In addition, LP is strictly more expressivebecause it admits arbitrary combinations of \:" and propositional connectives.The idea of logic of proofs can be found in G�odel's lecture [14] (see also [20]) �rst publishedin 1995, where a constructive version of the modal provability logic S4 was sketched. Thissketch does not contain formal de�nitions and lacks some important details, without whicha realization of S4 cannot be completed. The �rst presentations of LP (independent of [14])took place at the author's talks at the conferences in M�unster and Amsterdam in 1994.Gabbay's Labelled Deductive Systems ([12]) may serve as a natural framework for LP . TheLogic of Proofs may also be regarded as a basic epistemic logic with explicit justi�cations; aproblem of �nding such systems was raised by van Benthem in [6]. Intuitionistic Type Theoryby Martin-L�of [17], [18] also makes use of the format t :F with its informal provability reading.�Logic, Language and Computation'97, CSLI Publications, Stanford University, 1998.yCornell University, 627 Rhodes Hall, Ithaca NY, 14853 U.S.A. email:artemov@hybrid.cornell.edu andMoscow University, Russia. 1



2 Logic of Proofs and Proof Polynomials2.1 De�nition. The language of Logic of Proofs (LP) containsthe usual language of propositional boolean logicproof variables x0; : : : ; xn; : : :, proof constants a0; : : : ; an; : : :functional symbols: monadic !, binary � and +operator symbol of the type \term : formula".We will use a; b; c; : : : for proof constants, u; v; w; x; y; z; : : : for proof variables, i; j; k; l;m; nfor natural numbers. Terms are de�ned by the grammarp ::= xi j ai j !p j p1 � p2 j p1 + p2We call these terms proof polynomials and denote them by p,r,s,t: : :. By analogy we refer toconstants as coe�cients. Constants correspond to proofs of a �nite �xed set of propositionalschemas. We will also omit � whenever it is safe. We also assume that (a � b � c), (a � b � c � d),etc. should be read as ((a � b) � c), (((a � b) � c) � d), etc.Using t to stand for any term and S for any propositional letter, the formulas are de�nedby the grammar � ::= S j �1!�2 j �1^�2 j �1_�2 j :� j t :�We will use A;B;C; F;G;H;X; Y; Z for the formulas in this language, and �;�; : : : for the�nite sets (also �nite multisets, or �nite lists) of formulas unless otherwise explicitly stated.We will also use ~x; ~y; ~z; : : : and ~p;~r; ~s; : : : for vectors of proof variables and proof polynomialsrespectively. If ~s = fs1; : : : ; sng and � = fF1; : : : ; Fng, then ~s :� denotes fs1 :F1; : : : ; sn :Fng,W� = F1_ : : : _ Fn, V� = F1^ : : : ^ Fn. We assume the following precedences from highestto lowest: !; �;+; :;:;^;_;!. We will use the symbol = in di�erent situations, both formaland informal. Symbol � denotes syntactical identity, pEq is the G�odel number of E.The intended semantics for p :F is \p is a proof of F", which will be formalized in the lastsection of the paper.2.2 De�nition. The system LP . Axioms:A0. Axioms of classical propositional logic in the language of LPA1. t :F ! F \veri�cation"A2. t : (F ! G) ! (s :F ! (t�s) :G) \application"A3. t :F ! !t : (t :F ) \proof checker"A4. s :F ! (s+t) :F , t :F ! (s+t) :F \choice"Rules of inference: 2



R1. � ` F ! G � ` F� ` G \modus ponens".R2. if A is an axiom A0 { A4, and c a proof constant, then ` c :A \necessitation"The de�nition of the intuitionistic logic of proofs ILP can be obtained from the de�nition ofLP by replacing A0 by the list of axiom scheme A0I for the propositional intuitionistic logic.A Constant Speci�cation (CS) in LP (ILP) is a �nite set of formulas c1 :A1; : : : ; cn :An suchthat ci is a constant, and Fi an axiom A0 { A4 (A0I, A1 { A4 respectively). Each derivationin LP (ILP) naturally generates the CS consisting of all formulas introduced in this derivationby the necessitation rule.2.3 Comment. The system LP is correct and complete with respect to the provabilitysemantics in a classical formal system, e.g. Peano Arithmetic PA ([3],[5], cf. also Section 7of this paper). ILP is correct with respect to the provability interpretation for either PA orthe intuitionistic arithmetic HA. We do not address the issue of arithmetical completeness ofILP in this paper.Proof constants in LP stand for proofs of \simple facts", namely propositional axioms andaxioms A1 { A4. In a way the proof constants resemble atomic constant terms (combinators)of typed combinatory logic (cf. [24]). A constant c1 speci�ed as c1 : (A ! (B ! A)) canbe identi�ed with the combinator kA;B of the type A! (B!A). A constant c2 such thatc2 : [(A! (B! C)) ! ((A!B)! (A! C))] corresponds to the combinator sA;B;C of thetype (A! (B!C)) ! ((A!B)! (A!C)). The proof variables may be regarded as termvariables of combinatory logic, the operation \�" as the application of terms. In general anLP-formula t :F can be read as a combinatory term t of the type F . Typed combinatory logicCL! thus corresponds to a fragment of LP consisting only of formulas of the sort t :F wheret contains no operations other than \�" and F is a formula built from the propositional lettersby \!" only.There is no restriction on the choice of a constant c in R2 within a given derivation. Inparticular, R2 allows to introduce a formula c :A(c), or to specify a constant several times asa proof of di�erent axioms from A0(I), A1 { A4. One may restrict LP to injective constantspeci�cations, i.e. only allowing each constant to serve as a proof of a single axiom A within agiven derivation (although allowing constructions c :A(c), as before). Such a restriction doesnot change the ability of LP to emulate classical modal logic, or the functional and arithmeticalcompleteness theorems for LP (below), though it will provoke an excessive renaming of theconstants.The deduction theorem holds in LP and ILP.�; A ` B ) � ` A!B;3



and the substitution lemma: If �(x; P ) ` B(x; P ) for a propositional variable P and a proofvariable x, then for any proof polynomial t and any formula F�(x=t; P=F ) ` B(x=t; P=F ):2.4 Proposition. (Lifting Lemma) Given a derivation D in LP or ILP of the type~s :�;� ` F;one can construct a proof polynomial t(~x; ~y) such that~s :�; ~y :� ` t(~s; ~y) :F:Proof. By induction on the derivation ~s : �;� ` F . If F = si :Gi 2 ~s : �, then put t :=!siand use A3. If F = Dj 2 �, then put t := yj. If F is an axiom A0(I), A1 { A4, then pick afresh proof constant c and put t := c; by R2, F ` c :F . Let F be introduced by modus ponensfrom G ! F and G. Then, by the induction hypothesis, there are proof polynomials u(~s; ~y)and v(~s; ~y) such that u : (G! F ) and v :G are both derivable in LP from ~s : �; ~y :�. By A1,~s : �; ~y :� ` (uv) :F , and we put t := uv. If F is introduced by R2, then F = c :A for someaxiom A. Use the same R2 followed by A3: c :A !!c : c :A, to get ~s : �; ~y :� `!c :F , and putt :=!c.J It is easy to see from the proof that the lifting polynomial t(~s; ~y) is nothing but a blueprintof D. Thus LP accommodates its own proofs as terms. The necessitation rule` F ) ` p :F for some proof polynomial p,is a special case of Lifting. Note, that here p is the blueprint of a proof of F implicitlymentioned in \` F".2.5 Comment. Operations \�" and \!" are present for deterministic proof systems (systemswhere each proof proves only one theorem) as well as for non-deterministic ones (where a proofcan prove several di�erent theorems). In turn, \+" is an operation for non-deterministic proofsystems only. Indeed, by A4 we have s :F ^ t :G ! (s+t) :F ^ (s+t) :G, thus s+ t provesdi�erent formulas. The di�erences between deterministic and non-deterministic proof systemsare mostly cosmetic. Usual Hilbert or Gentzen style proof systems may be considered as eitherdeterministic (by assuming that a proof derives only the end formula/sequent of a proof tree)or as non-deterministic (by assuming that a proof derives all intermediate formulas assignedto the nodes of the proof tree). The logic of strictly deterministic proof systems was studiedin [1], [2], and in [15], where it meets a complete axiomatization (system FLP).4



3 Realization of modal logic in LPIt is easy to see that a forgetful projection of LP is correct with respect to S4. Let F o be theresult of substituting 2X for all occurrences of t :X in F , and �o = fF o j F 2 �g for anyset � of LP-formulas. A straightforward induction on a derivation in LP demonstrates thatif LP ` F , then S4 ` F o. As it was shown in [3], [5] the converse also holds. Namely, LPsu�ces to realize any S4 theorem.Under IS4 we mean the intuitionistic modal logic on the basis of S4 (cf. [7], [16], [21],where IS4 was studied under the name IS42). Basically the same algorithm (below) providesa realization of IS4 in ILP.3.1 Example. IS4 ` (2A ^2B)! 2(A^B)In ILP the corresponding derivation is1. A;B ` A^B, by propositional logic2. x :A; y :B ` t(x; y) : (A^B), by Lifting3. ` x :A^y :B ! t(x; y) : (A^B), from 2.3.2 Example. IS4 ` (2A_2B)! 2(A_B).In ILP the corresponding derivation is1. A! A_B; B ! A_B2. a : (A! A _B); b : (B ! A _B), by necessitation,3. x :A! (a�x) : (A_B), from 2 by A24. y :B ! (b�y) : (A_B), from 2 by A25. ax : (A_B)! (ax+by) : (A_B), by : (A_B)! (ax+by) : (A_B), by A46. (x :A _ y :B)! (ax+by) : (A_B)By an LP-realization of a modal formula F we mean an assignment of proof polynomials toall occurrences of the modality in F , Let F r be the image of F under a realization r. Positiveand negative occurrences of modality in a formula and a sequent are de�ned in the usual way.Namely1. an indicated occurrence of 2 in 2F is positive;2. any occurrence of 2 in the subformula F of G!F , G^F , F^G, G_F , F_G, 2F and� ) �; F has the same polarity as the corresponding occurrence of 2 in F ;3. any occurrence of 2 in the subformula F of :F , F!G and F;� ) � has a polarityopposite to that of the corresponding occurrence of 2 in F .3.3 Comment. In a provability context 2F is intuitively understood as \there exists a proofx of F". After a skolemization, all negative occurrences of 2 produce arguments of Skolem5



functions, while positive ones give functions of those arguments. For example, 2A ! 2Bshould be read informally as9x \ x is a proof of A"! 9y \ y is a proof of B";with the Skolem form \ x is a proof of A"! \ f(x) is a proof of B":The following de�nition partially captures this feature. A realization r is normal if all negativeoccurrences of 2 are realized by proof variables.3.4 Theorem. If IS4 ` F , then ILP ` F r for some normal realization r.Proof. Consider a cut-free sequent formulation of IS4, with sequents � ) F , where � is a�nite set of modal formulas. Axioms are sequents of the form S) S, where S is a propositionalletter, and the sequent ? ) . Along with the usual structural rules and rules introducingboolean connectives there are two proper modal rules (cf.[24]):A;� ) B (2 ) )2A;� ) B and 2� ) A () 2)2� ) 2A(2fA1; : : : ; Ang = f2A1; : : : ;2Ang).If IS4 ` F , then there exists a cut-free derivation T of a sequent ) F . It su�ces now toconstruct a normal realization r such that ILP ` V�r ! Br for any sequent �) B in T . Wewill also speak about a sequent �) B being derivable in ILP meaning ILP ` V�! B. Notethat in a cut-free derivation T the rules respect polarities, all occurrences of 2 introduced by() 2) are positive, and all negative occurrences are introduced by (2 ) ) or by weakening.Occurrences of 2 are related if they occur in related formulas of premises and conclusions ofrules; we extend this relationship by transitivity. All occurrences of 2 in T are naturally splitinto disjoint families of related ones. We call a family essential if it contains at least one caseof the () 2) rule.Now the desired r will be constructed by steps 1 { 3 described below. We reserve a largeenough set of proof variables as provisional variables.Step 1. For every negative family and non essential positive family we replace all occur-rences of 2 by \x : " for a fresh proof variable x.Step 2. Pick an essential family f , enumerate all the occurrences of rules () 2), whichintroduce boxes of this family. Let nf be the total number of such rules for the family f .Replace all boxes of the family f by the term(v1 + : : : + vnf );6



where vi's are fresh provisional variables. The resulting tree T0 is labelled by ILP-formulas,since all occurrences of the kind 2X in T are replaced by t :X for the corresponding t.Step 3. Replace the provisional variables by proof polynomials as follows. Proceed fromthe leaves of the tree to its root. By induction on the depth of a node in T0 we establishthat after the process passes a node, a sequent assigned to this node becomes derivable inILP. The axioms S ) S and ? ) are derivable in ILP. For every rule other than () 2)we do not change the realization of formulas, and just establish that the concluding sequentis provable in ILP given that the premises are. The induction steps corresponding to thesemoves are straightforward.Let an occurrence of the rule () 2) have number i in the numbering of all rules () 2)from a given family f . This rule already has a formy1 :Y1; : : : ; yk :Yk ) Y ,y1 :Y1; : : : ; yk :Yk ) (u1 + : : : + unf ) :Ywhere y1; : : : ; yk are proof variables, u1; : : : ; unf are proof polynomials, and ui is a provisionalvariable. By the induction hypothesis, the premise sequent y1 :Y1; : : : ; yk :Yk ) Y is derivablein ILP, which yields a derivation ofy1 :Y1; : : : ; yk :Yk ) Y:By Lifting Lemma (1.4), construct a proof polynomial t(y1; : : : ; yn) such thaty1 :Y1; : : : ; yk :Yk ) t(y1; : : : ; yn) :Yis derivable in ILP. SinceILP ` t :Y ! (u1 + : : :+ ui�1 + t+ ui+1 + : : :+ unf ) :Y;we have ILP ` y1 :Y1; : : : ; yk :Yk ) (u1 + : : :+ ui�1 + t+ ui+1 + : : :+ unf ) :Y:Now substitute t(y1; : : : ; yn) for ui everywhere in the tree T0. Note, that t(y1; : : : ; yn) has noprovisional variables, there is one provisional variable (namely ui) less in the entire T0. Allsequents derivable in ILP remain derivable in ILP, the conclusion of the given rule () 2)became derivable, and the induction step is complete.Eventually, we substitute terms of non-provisional variables for all provisional variables inT0 and establish that the corresponding root sequent of T0 is derivable in ILP. Note that therealization of 2's built by this procedure is normal. Moreover, the formula F r may be regardedas the result of a skolemization procedure with respect to quanti�ers on proofs (Comment 3.2)with the corresponding instantiation of Skolem functions by proof polynomials.7



J3.5 Comment. It follows from 3.3 that IS4 is nothing but a lazy version of ILP when wedon't keep track on the proof polynomials assigned to the occurrences of 2. Each theoremof IS4 admits a decoding via ILP as a statement about speci�c proofs. The language ofILP is more rich than the one of IS4. In particular, IS4 theorems admit essentially di�erentrealizations in ILP. For example, consider two theorems of ILP having the same modalprojection: x :F_y :F ! (x+ y) :F and x :F_x :F ! x :F:The former of these formulas is a meaningful speci�cation of the operation \+". In a contrast,the latter one is a trivial tautology.4 Gentzen formulation of ILPThe Gentzen style system ILPG for ILP can be de�ned as follows (cf. the system G2i from[24]). Sequents in ILPG are all of the form � ) F , where � is a multiset of LP-formulas, andF is an LP-formula.Axioms of ILPG are sequents of the form P;� ) P , where P is either a propositional letteror a formula of the sort t :F , and sequents of the form ?;� ) F .Rules of ILPG are A;B;� ) C (L^)A^B;� ) C � ) A � ) B (R^)� ) A^BA;� ) C B;� ) C (L_)A_B;� ) C � ) Ai (R_)� ) A0_A1 (i = 0; 1)� ) A B;� ) C (L!)A!B;� ) C A;� ) B (R!)� ) A!BA;A;� ) C (LC)A;� ) C � ) A A;�0 ) B (Cut)�;�0 ) BA;� ) B (L :)t :A;� ) B � ) t :A (R!)� ) !t : t :A8



� ) t :A (Rl+)� ) �; (t+ s) :A � ) t :A (Rr+)� ) �; (s+ t) :A� ) s : (A! B) � ) t :A (R�)� ) (s � t) :B D� ) A (Rc),� ) c :Awhere in (Rc)-rule A is an axiom A0I { A4 of the Hilbert style system for ILP, c is a proofconstant and D is the standard derivation of � ) A. Under the standard derivation here wemean the following. If A is A0I (i.e. a propositional axiom), then D is the straightforwardcut-free derivation of � ) A in the Gentzen style system for Int. For axioms A1 { A4 thestandard derivations are respectively D0F;� ) Ft :F;� ) F ,� ) t :F!Fwhere D0 is the straightforward cut-free derivation of F;� ) F in the Gentzen style systemfor Int; s : (F ! G); t :F;� ) s : (F ! G) s : (F ! G); t :F;� ) t :F ;s : (F ! G); t :F;� ) (s � t) :G� ) s : (F ! G)!(t :F!(s � t) :G)t :F;� ) t :Ft :F;� ) !t : t :F ;� ) t :F! !t : t :F t :F;� ) t :Ft :F;� ) (t+ s) :F .� ) t :F!(t+ s) :FUnder ILPG� we mean a cut-free fragment of ILPG.4.1 Theorem. Cut elimination holds for ILP.Proof. We shall deliver a syntactical proof that ILPG ` � ) A yields ILPG� ` � ) A.4.2 De�nition. A level of a cut is the sum of the depths of the deductions of the premises.The rank rk(A;D) of a given occurrence of A in a derivation D is de�ned by the followinginduction on the depth of this occurrence in D. For a term or a formula X by jXj we denotethe total number of occurrences of propositional, proof variables and constants, propositional9



and functional symbols in X. If X 2 fP;?;�g in a derivation D consisting of an axiomP;� ) P or ?;� ) F , then rk(X;D) = jXj.For all the rules of ILPG ranks of the corresponding occurrences of the side formulascoincide. For the rule(L^)rk(A^B;D) = rk(A;D) + rk(B;D) + 1:Likewise for the rule (R^), (L_) and (R!).For (R_), case j = 0, rk(A0_A1;D) = rk(A0;D) + jA1j+ 1;similarly for j = 1.For (L!) rk(A!B;D) = rk(A;D) + rk(B;D) + 1:For (L :) rk(t :A;D) = rk(A;D) + jtj:For (R!) rk(!t : t :A;D) = rk(t :A;D) + j!tj:For (Rl+) rk((t+ s) :A;D) = rk(t :A;D) + jsj+ 1:For (Rr+) rk((t+ s) :A;D) = rk(s :A;D) + jtj+ 1:For (R�) rk((s � t) :B;D) = rk(s : (A!B);D) + rk(t :A;D) + j(s � t) :Bj:For (Rc) rk(c :A;D) = rk(A;D) + j1j:Note that rk(A;D) = jAj.For (LC) the rank of the occurrence of A in the conclusion of the rule is the maximum rankof the indicated occurrences of A in the premise sequent. The rank of the cut rule� ) A A;�0 ) B (Cut)�;�0 ) Bis the maximum rank of the indicated occurrences of A in the premise sequents. The cutrankof the deduction D is the maximum of the ranks of the cuts occurring in D.From the de�nitions it follows easily that 10



1. jAj � rk(A;D) and rk(A;D) = jAj if D does not use the rule (R�).2. rk(A;D) monotonically increases for the related occurrences of A with the increase ofdepth.3. Let �) � be an occurrence of a sequent in a derivation D. Let D0 be a a subderivationof � ) � in D. Suppose D00 is another derivation of � ) � such thatrk(X;D00) � rk(X;D0)for each occurrence of a formula X in � ) �. If we replace D0 by D00 in D, then it will notincrease the ranks of formulas in D outside D00.4.3 Lemma. (Rank- and depth-preserving invertibility of the rule (R!)). If D is a deriva-tion of � ) A!B, then there is a derivation D0 of A;� ) B such that1. the depth of D0 is not greater, then the depth of D,2. the cutrank of D0 equals to the cutrank of D,3. rk(F;D0) = rk(F;D) for all formulas from �,4. rk(A;D0) + rk(B;D0) + 1 = rk(A!B;D).Proof. An induction on the depth of D. The base case corresponds to an axiom. SinceA!B is neither atomic nor of the form t :F the case when A!B is a principal formula of anaxiom is impossible. If D is an axiom ?;� ) A!B, then put D0 to be ?; A;� ) B. Forthe induction step consider two possibilities. If A!B is the side formula of the last rule inD, then using induction hypothesis, replace � ) A!B in the premise(s) of the last rule byA;� ) B. If A!B is the principal formula of the last rule in D, then the deduction endswith D1A;� ) B .� ) A!BIn this case put D0 to be D1.J4.4 Lemma. (Stripping Lemma) Let D be a cut-free derivation of � ) t :A. Then there isa derivation D0 of � ) A such that1. the cutrank of D0 is less then the rank of the indicated occurrence of t :A in D,2. rk(F;D0) = rk(F;D) for all formulas from � of the end sequent,3. rk(A;D0) < rk(t :A;D) for A and t :A being the antecedents of the end sequents of D0and D respectively.
11



Proof. Induction on the depth of D. If D is an axiom t :F;� ) t :F , then let D0 be thederivation D1F;� ) F (L:),t :F;� ) Fwhere D1 is a standard cut-free derivation of F;�) F . Note, that such a derivation does notuse the rule (R�), therefore rk(X;D0) = jXj = rk(X;D) for all formulas from �. Likewise,rk(F;D0) = jF j < rk(t :F;D).The induction step. The case when t :A is a side formula of the last rule in D is trivial.Let t :A be the principal formula of the last rule (R!) in D, then the deduction ends withD1� ) t :A .� ) !t : t :AIn this case D1 is a cut-free derivations satisfying also the requirements 2. and 3. of thelemma.If the last rule in D is (Rl+), then the deduction ends withD1� ) t :A .� ) (t+ s) :ABy the induction hypothesis, there exists a derivation D01 of � ) A satisfying the lemma'sconditions for the derivation D1. Put D0 to be D01. The case (Rr+) can be treated similarly.If the last rule in D is (R�), then the deduction ends withD1 D2� ) s : (A!B) � ) t :A .� ) (s � t) :BBy the induction hypothesis, there exist derivations D01 of � ) A! B and D02 of � ) Asatisfying the lemma's conditions. Take the derivation D001 of A;� ) B from the inversionlemma 3.3 and combine the new derivation D3D02 D001� ) A A;� ) B .�;� ) BUsing the contraction (LC) we get the desired derivation D0 of � ) B. It is easy to checkthat all the requirements of the lemma are met.12



If the last rule in D is (Rc), then D is D1� ) A .� ) c :ALet D0 be D1.JNow we return to the proof of theorem 4.1. Our strategy is to eliminate the uppermost cuts. Inorder to save expositions of some well known constructions we will refer to the correspondingsteps of the proof of the cut elimination theorem 4.1.2 from [24] when convenient.4.5 Lemma. Let D be a derivation ending in a cutD1� ) A D2A;�0 ) B�;�0 ) Bsuch that D contains no other cuts. Then we can transform D into a derivation D0 of the samesequent �;�0 ) B such that cutrank(D0)<cutrank(D) = max frk(A;D1); rk(A;D2)g withoutan increase of the ranks of the formulas from �;�0; B.Proof. An induction on the rank of the cut rule, with a subinduction on its level. Thereare then three possibilities:1. at least one of D1, D2 is an axiom P;� ) P or ?;� ) F ;2. not 1. and the cutformula is not principal in at least one of the premises;3. not 1. and the cutformula is principal on both sides.Case 1. Cut can be eliminated by the standard reductions ([24]).Case 2. We permute the cut upward in a standard way (cf.[24]) without changing its rank aswell as the ranks of all formulas in the end sequent of the derivation, until we �nd ourselvesin situations number 1 or number 3.Case 3. The cutformula is principal in both premises and neither of the premises an axiom.The induction hypothesis is that the claim of lemma has been shown for all cuts of rank lessthan rk(A;D) and of rank equal rk(A;D), but level less than the one of the given cut.The rules corresponding to propositional connectives are treated in a usual way (cf.[24]).There is one additional concern here compared to [24]: we have to make sure that our reduc-tions do not increase the ranks of the side formulas from �;�0. As an example, consider the13



case (R!). The original deduction isD0�; A ) B� ) A!B D1 D2�0 ) A �0; B ) C�0; A!B ) C .�;�0 ) CThis is transformed into D1 D0�0 ) A �; A ) B�0;� ) B D2�0; B ) C�0;�0;�; ) CWe have eliminated the old cut but have got two new cuts instead, both having lower ranks.After a number of contractions in the end sequent we get the desired derivation.The new cases emerge when the cutformula is of the form t :F . In all those cases the rightpremise is just introduced by (L:). So, we distinguish the cases by their left premises.Case (R!). The derivation is D1� ) t :A� ) !t : t :A D2t :A;�0 ) C!t : t :A;� ) C .�;�0 ) CThis is transformed into a derivation with a lower ranked cutD1� ) t :A D2t :A;�0 ) C .�;�0 ) CCase (Rc) is treated is a similar way.Case (Rl+) (and (Rr+) by a similar argument). The derivationD1� ) t :A� ) (t+ s) :A D2A;�0 ) C(t+ s) :A;� ) C�;�0 ) C14



should be transformed into one with a lower cutrankD1� ) t :A D2A;�0 ) Ct :A;� ) C�;�0 ) CCase (R�): D0 D1� ) s : (A!B) � ) t :A� ) (s � t) :B D2B;�0 ) C(s � t) :B;�0 ) C .�;�0 ) CWe transform it into a derivation with a lower cutrank as follows. By Stripping Lemma (4.4)without a rank increase we get derivationsD00 D01� ) A!B � ) A :From D00 by 4.3 without the rank increase of the side formulas we get a derivationD000�; A ) B ;where rk(A;D000); rk(B;D000) < rk(A!B;D00) < rk(s : (A!B);D0) < rk((s � t) :B;D):The transformed derivation in this case will beD01 D000� ) A A;� ) B�;� ) B D2B;�0 ) C�;�;�0 ) CAgain, use some contractions in the end sequent to get the desired derivation. We haveeliminated the old cut and have created two new ones and, may be, some more in D01 and D000as a result of the Stripping. By 4.3 and 4.4 all new cuts have lower rank.This ends the proof of lemma 4.5.J 15



4.6 Lemma. Let a derivation D contains not more than one use of the cut rule. Then by a�nite chain of reductions it can be transformed into a cut-free derivation D0 of the same endsequent without changing the ranks of the formulas from the end sequent.Proof. An induction on the n =cutrank(D). The base case n = 0. Then D is already cut-free. The induction step. Assume n > 0, thus, D contains a cut. Without loss of generalityassume that the cut rule is the last rule in D. By Lemma 4.5 transform D into D1 withcutrank(D1) <cutrank(D). Beginning with the uppermost cuts in D1 eliminate them all usingthe induction hypothesis.J To conclude the proof of Theorem 4.1 use Lemma 4.6 to eliminate every cut in a givenderivation beginning with the uppermost ones.J5 Natural deduction system and �-terms for ILP5.1 De�nition. The natural deduction system LPN for LP is obtained from a usual naturaldeduction system for propositional logic (cf. [11], [24]) in the language of LP extended by thefollowing rules s : (A! B) t :A (�I)(s � t) :B t :A (: E)A t :A (!I)!t : t :At :A (+I)(t+ s) :A t :A (+I)(s+ t) :A DA (cI),c :Awhere A is an axiom of the Hilbert version of LP (De�nition 2.2), c is a proof constant, and Dis the standard derivation of A. Under the standard derivation of A we mean the following.If A is an axiom A0, then D is the straightforward normal derivation of A in the naturaldeduction system for Int. For other axioms A1 { A4 the standard derivations are[t :A]At :A!A [s : (A!B)] [t :A](s � t) :Bt :A!(s � t) :Bs : (A!B)!(t :A!(s � t) :B)16



[t :A]!t : t :At :A! !t : t :A [t :A](t+s) :A .t :A!(t+s) :ANote that a standard derivation has no undischarged premises.5.2 De�nition. Under ILPN we mean an intuitionistic version of of LPN which is obtainedfrom LPN by omitting the double negation rule[:A]D? .AUnder LPN ` � ) A or ILPN ` � ) A we mean \A is derivable from assumptions �" inLPN or in ILPN respectively.A standard theorem relating Hilbert, Gentzen and natural style derivations in LP holds.Namely the following are equivalent1. � `ILP A2. ILPG ` � ) A3. ILPN ` � ) A.This fact is established by the standard mutual simulations of derivations in all three systems(cf. section 3.3 in [24]). In fact for any source derivation of size s the simulation runs inpolynomial time and produces a derivation of size O(s).The following analog of the Lifting lemma 1.4 holds for ILPN .5.3 Corollary. If ILPN ` ~s :�;� ) A, then for any proof variables ~y one can construct aproof polynomial t(~x; ~y) such that ILPN ` ~s :�; ~y :� ) t(~s; ~y) :A.Proof. A straightforward induction of the depth of a derivation. The number of steps in thealgorithm constructing D0 is bounded by a polynomial of the length of D.J5.4 De�nition. Contractions for ILPN include all usual contractions for propositional logic(^�;_�;!-contractions, permutation contractions) (cf. section 6.1.3 in [24]), and the newcontractions 17



�-contractionD1 D2s : (A! B) t :B(s � t) :B transforms intoB D1s : (A! B)A! B D2t :AA ,B+-contraction Dt :A(t+ s) :A transforms intoA Dt :A ,A!-contraction Dt :A!t : t :A transforms intot :A Dt :A;c-contraction DAc :A transforms intoA DA:An obvious new permutational contraction should also be added that allow \pulling" the(: E) upwards through the (_E) rule. An derivation D is normal if no contraction is possibleanywhere in D.5.5 Theorem. (From Gentzen to normal deductions in ILP)ILPG ` � ) A if and only if ILPN ` � ) A:Moreover, a cut-free derivation in ILPG transforms into a normal derivation in ILPN .18



Proof. A usual argument in the style of Section 6.3 from [24].J5.6 Theorem. Normalization holds for ILPNProof. Take a derivation of the sort � ) A in ILPN , transform it into a derivation of� ) A in ILPG, perform a cut elimination, and transform the resulting cut-free proof backinto an ILPN derivation. By Theorem 5.5, the resulting derivation is normal. One could writedown a direct algorithm of normalization of derivations in ILPN that will essentially repeatthe reduction steps for cut elimination in ILPG. Moreover, on the basis of the reductions fromthe proof of Theorem 4.1 one could establish a strong normalization property of ILPG andILPN .J Extending the term calculus for the intuitionistic logic ([24]) we can identify the full ILPNwith a system of typed �-terms ILPN� in a natural way. In ILPN� �-terms have the formatt :F where the type F is an LP-formula, and the term t is built from the proof variables byspeci�c operations (below).5.7 De�nition. We de�ne a �-term calculus ILPN� for the full ILPN . The language ofILPN� has only formulas of the type t :F where F is an LP-formula, and t is a term builtfrom the proof variables by atomic operations p, pj, kj , E_u;v, E?A , App, P, U, B, Sj, C,(j=0,1), and �-abstraction. The arities of the operations will be made clear in the rules. The�rst eight clauses of come directly from the term calculus for Int ([24], 2.2.2). We will omit anobvious description of free and bounded variables. As usual, [A] denotes a discharged premiseA. In the derivations denoted in this de�nition by[w :F ]...p :Gthe variable w occurs free neither in F;G nor in any undischarged premise of the derivation.axiom y :F (y is a variable) t :? (?Et)E?A (t) :As :A t :B (^It)p(s; t) : (A^B) t : (A0^A1) j 2 f0; 1g, (^Et)pj(t) :Aj19



t :Aj j 2 f0; 1g, (_It)kj(t) : (A0_A1) [u :A] [v :B]... ...t : (A_B) s :C s0 :C (_Et)E_u;v(t;s;s0) :C[u :A]...t :B (! It)�u:t : (A! B) s : (A! B) t :A (! Et)App(s; t) :Bq :s : (A! B) r : t :A (�It)P(q; r) : (s � t) :B q : t :A (: Et)U(q) :Aq : t :A (!tI)B(q) : !t : t :A q : tj :A j 2 f0; 1g, (+I).Sj(q) : (t0 + t1) :ANote that the list of rules above su�ces to build a �-term p without free variables whichinternalize in ILPN� the standard ILPN -derivation of an axiom A. In particular, ILPN� `p :A. For example, the �-term version of the standard derivation of axiom A3 isv : t :FB(v) !t : t :F :�v:B(v) : (t :F! !t : t :F )The last rule of ILPN� is eDp :A (cIt);C(p) :c :Awhere eD is the �-term version of the standard derivation of A in ILPN .5.8 De�nition. In the term notation the contractions for the ILPN� are1. pj(p(t0; t1)) cont tj (j 2 f0; 1g) , 20



2. E_x0;x1(kjt;t0;t1) cont tj [x=t],3. App(�x:t; s) cont t[x=s],4. U(B(t)) cont t,5. U(C(t)) cont t,6. U(P(t0; t1)) cont App(U(t0);U(t1)),7. U(Sj(t)) cont U(t),8. f [E_x0;x1(kjt;t0;t1)] cont E_x0;x1(kjt;f [t0];f [t1]), where f is another eliminating oper-ator (i.e. one of pj, App, U).The contractions 1 - 5 are the called detour contractions, 6 - 8 are permutation contractions.A �-term t is normal if no contractions are possible in t.It follows from the de�nitions thatILPN ` � ) A i� ILPN� ` ~x :� ) t(~x) :A for some ILPN�-term t:5.9 Theorem. (Normalization of ILPN�-terms) Every �-term for ILPN� is normalizing.Proof. Translate the proof of theorem 5.6 from the language of derivations into the languageof �-terms. In fact one can establish a strong normalization of ILPN�-terms with respect tothe contractions 5.8.J6 Abstraction in Logic of ProofsIn this section we show that ILP provides a standard provability semantics for the operator of�-abstraction. This matches our earlier observation (Section 3), that IS4-modality is realizedby proof polynomials. Thus modality and �-terms are objects of the same sort, namely, theyare all proof polynomials. Through a realization in ILP both modality and modal �-termsreceive a uniform provability semantics.The de�ned abstraction operator ��x on proof polynomials below is a natural extensionof the de�ned �-abstraction operator ��x in combinatory logic (cf. [24]).6.1 De�nition. Under ground (!I) rule we mean the rule (!I) where the principal proofpolynomial t contains no variables. An ILPN -derivation D is pure if it uses no rules other21



than (�I), (cI), and ground (!I). It is clear that every pure derivation is normal since it hasno elimination rules.6.2 Lemma. (De�nable abstraction) Let D be a pure ILPN -derivation of a type~p :�; x :A ) t(x) :Bsuch that x does not occur in ~p :�; A;B. Then one may construct a proof polynomial ��x:t(x)and a pure ILPN -derivation D0 of the type~p :� ) ��x:t(x) : (A!B):Proof. The base case is the depth of D equals one. There are two possibilities.1. D is t(x) :B and t(x) contains an occurrence of x. Then t(x) :B = x :A. Indeed, by thede�nition of a natural derivation of the depth 1, the formula t(x) :B should occur in ~p :�; x :A.Since x does not occur in ~p : �; A;B the only remaining possibility is when t(x) :B coincideswith x :A. Let D0 be the pure derivation (without undischarged premises) of (a � b � c) : (A!A)where a; b; c are proof constants speci�ed by the conditions (cf. [24], section 1.3.6.)a : ([A!((A!A)!A)]! [(A!(A!A))!(A!A)])b : [A!((A!A)!A)]c : [A!(A!A)].Let ��x:x = (a � b � c). In fact this case coincides with the presentation of ��xA:x assA;A!A;AkA;A!AkA;A in combinatory logic (cf. [24]).2. D is t :B and t does not contain an occurrence of x. Then t :B 2 ~p :�. Let D0 be[B]A!BB!(A!B) (cI)b : (B!(A!B)) t :B (�I) .(b � t) : (A!B)Let ��x:t = b � t. This is the well known equality ��xA:tB = kB;AtB of combinatory logic.The induction step corresponding to the ground (!I) rule is treated similarly to the case2. Consider the case (�I). Let a derivation D from the premises ~p :�; x :A end withs : (Y !B) t :Y .(s � t) :B22



By the induction hypothesis, we have already built pure derivations from the premises ~p :� of��x:s : (A!(Y !B)) and ��x:t : (A!Y ). From them we construct a pure derivation D0D1(A!(Y !B))!((A!Y )!(A!B))c : ((A!(Y !B))!((A!Y )!(A!B))) ��x:s : (A!(Y !B))(c � ��x:s) : ((A!Y )!(A!B)) ��x:t : (A!Y ) ,(c � ��x:s � ��x:t) : (A!B)where D1 is the standard derivation of a propositional axiom. Let ��x:(s�t) = (c���x:s���x:t).In combinatory logic notations��xA:sY!BtY = sA;Y;B��x:s��x:tJ6.3 Comment. In ILPN �-abstraction is presented by a set of proof polynomials de-pending on a context (e.g. an ILPN -derivation). In this respect the realization from 6.2 of�-abstraction by proof polynomials is similar the realization of IS4-modality which is decom-posed in 3.3 into a set of proof polynomials depending on a context (an IS4-derivation).The operation �� su�ces to emulate the traditional �-abstraction. In fact it cannot beeasily extended from the pure to more general derivations without sacri�cing some desiredproperties. We need to keep the format ~p :�; x :A) t(x) :B throughout all the derivation D inorder to preserve an inductive character of the de�nition. The restriction \x does not occur in~p :�; A;B" is needed to guarantee the correctness of �-conversion (below) for ��-abstraction,though it rules out (!I). Note, that the rule (!I) does not admit abstraction anyway. Indeed,in ILPN we have x :A ) !x :x :A;but for no proof polynomial p ) p : (A!x :A)since A!x :A is not provable in ILP.6.4 Comment. The dual operation to �-abstraction is �-conversion(�xA:tB)sA �!� tB [xA=sA]:�-conversion is naturally presented as the following transformation of pure derivations inILPN : 23



[x :A]...t(x) :B��xt(x) : (A!B) Ds :A transforms into(��xt(x) � s) :B Ds :A...t(s) :B:The rule of �-conversion (�xA:tB)sA �!� t if x is not free in tis treated in the same way. Finally, �-conversion corresponds to an obviously valid rule ofrenaming bounded variables in ILPN -derivations with abstraction.All other standard �-term constructors for Int can also be realized as operations on proofpolynomials. This is a straightforward corollary of the fact that Int is a fragment of ILPNand of the Lifting rule for ILPN . Indeed, if ILPN ` � ) B, then by induction on the givenproof one can construct a proof polynomial p(~y) such that ILPN ` ~y :� ) p(~y) :B. However,for the sake of clear presentation of �-terms as proof polynomials we will explicitly build theproof polynomials corresponding to standard �-terms constructors.6.5 De�nition. We de�ne a list of standard translations of term constructors from ILPN�to corresponding derivations in ILPN .�-term constructor corresponding derivation in ILPNy :F y :Fs :A t :Bp(s; t) : (A^B) eDc : (A! (B ! A^B)) s :A(c � s) : (B ! A^B) t :B(c � s � t) : (A^B)t : (A0^A1) j 2 f0; 1gpj(t) :Aj eDc : (A0^A1 ! Aj) t : (A0^A1)(c � t) :Ajt :Aj j 2 f0; 1gkj(t) : (A0_A1) eDc : (Aj ! A0_A1) t :Aj(c � t) : (A0_A1)24



[u :A] [v :B]... ...t : (A_B) s :C s0 :CE_u;v(t;s;s0) :C D1 D2(c � ��u:s) : ((B!C)!(A_B!C)) D3(c � ��u:s � ��v:s0) : (A_B!C) t : (A_B)(c � ��u:s � ��v:s0 � t) :Cwhere D1 is eDc : ((A!C)!((B!C)!(A_B!C)))D2 and D3 are [u :A]...s :C��u:s : (A! C) [v :B]...s0 :C��v:s0 : (B ! C)[u :A]...t :B�u:t : (A! B) [u :A]...t :B��u:t : (A! B)s : (A! B) t :AApp(s; t) :B s : (A! B) t :A(s � t) :B
t :?E?A (t) :A eDc : (? ! A) t :?(s � t) :A

25



u :s : (A!B) v : t :AP(u; v) : (s � t) :B eDc : (s : (A!B)!(t :A!(s � t) :B)) u :s : (A!B)(c � u) : (t :A!(s � t) :B) v : t :A(c � u � v) : (s � t) :B
v : t :AU(v) :A eDc : (t :A!A) v : t :A(c � v) :A

v : t :AB(v) : !t : t :A eDc : (t :A! !t : t :A) v : t :A(c � v) : !t : t :Av : tj :A j 2 f0; 1gSj(v) : (t0 + t1) :A eDc : (tj :A!(t0 + t1) :A) v : tj :A(c � v) : (t0 + t1) :ADp :A (cIt)C(p) :c :A d : (c :A!(A!c :A)) D1c :A!c :c :A(d�!c) : (A!c :A) t :A(d� !c � t) :AIn each case eD denotes a corresponding standard ILPN -derivation with the end rule (cI).6.6 Theorem. (Realization of ILPN� into ILPN ) Under standard translations from 6.5 anILPN�-derivation ~x :� ) t(~x) :A becomes a pure derivation ~x :�r ) tr(~x) :Ar in the ILPN .Proof. A straightforward induction on an ILPN�-derivation ~x : � ) t(~x) :A. It is imme-diate from de�nition 6.5 and lemma 6.2 that each standard transformation returns a purederivation. 26



J6.7 Corollary. (Realization of �-calculus for Int into ILPN ) Let D be a �-term derivationof the type ~x : � ) t(~x) : A in the term calculus for Int. Standard translations de�ne ane�ective step by step realization r of D as a derivation D0 of ~x :� ) tr(~x) :A in the ILPN .6.8 Comment. As it is easy to see that ILPN� (as well as �-calculus for Int) can be realizedin a small fragment of ILPN consisting of pure derivations only.We already have enough ingredients to demonstrate that the Logic of Proofs can emulatemodal �-calculi.We will show how ILPG naturally emulates the modal �-calculus for IS4 ([7], [16], [21], cf.also [10]) and thus supplies modal �-terms with standard provability semantics.6.9 Theorem. (Realization of modal �-calculus). There is an e�ective step by step real-ization r of any derivation ~x : � ) t(~x) :A in the �-term calculus for IS4 as a derivation of~x :�r ) tr(~x) :Ar in ILPN .Proof. As above all the usual steps of �-terms formation can be emulated in the Logic ofProofs (here in ILPN ). The entire term assignment system for IS4 is obtained from the usualone for intuitionistic logic by adding two new rules that correspond to \modal" operations on�-terms \box" and \unbox":� ) s1 :2A1 : : : � ) sk :2Ak x1 :2A1; : : : ; xk :2Ak ) t(~x) :B (2I)� ) box(t(~s)) :2Band � ) t :2A (2E).� ) unbox(t) :ALet ~p : � ) t : A be a modal �-term, and let D be a natural derivation of A from thehypothesis �, which is represented by this �-term. The construction of the desired realizationr takes two rounds. First, we realize all the occurrences of 2 in the derivation D of B fromA1; : : : ; An by proof polynomials according to the algorithm from 3.3. As a result, we geta realization � of modalities in D such that ILPN ` �� ) F � holds for every intermediatederivation �) F in D. The second round produces the desired realization r and proceeds byan induction on the steps of the �-term construction (i.e. on the construction of D). Withoutloss of generality we assume, that the proof variables used in the �rst round for � are alldi�erent from the ones we use in the second round.27



At the nodes of D corresponding to intuitionistic connectives use standard translationsfrom 6.5. At a (2I) node a natural deduction step is performed:� ) 2A1 : : : � ) 2Ak 2A1; : : : ;2Ak ) B .� ) 2BThe corresponding step of the modal �-term assigning process is~u :� ) s1(~u) :2A1 : : : ~u :� ) sk(~u) :2Ak x1 :2A1; : : : ; xk :2Ak ) t(~x) :B .~u :� ) box(t)(~s(~u)) :2BBy the construction of ��� ) f1 :A�1; : : : ; �� ) fk :A�k; y1 :A�1; : : : ; yk :A�k ) B�(~y)for some proof polynomials f1; : : : ; fk. Also by the construction of � from 3.3 we may assume,that the variables y1; : : : ; yk do not occur in A�1; : : : ; A�k. By 5.3, �nd a proof polynomial p(~y)such that y1 :A�1; : : : ; yk :A�k ) p(~y) :B�(~y):By the substitution [~y=~f ] from the latter derivation we getf1 :A�1; : : : ; fk :A�k ) p(~f) :B�(~f):And by the induction hypothesis,~u :�� ) sr1(~u) :f1 :A�1; : : : ; ~u :�� ) srk(~u) :fk :A�k:By 5.3, construct a proof polynomial g(~x) such thatx1 :f1 :A�1; : : : ; xk :fk :A�k ) g(~x) :p(~f) :B�(~f);by substitution, sr1 :f1 :A�1; : : : ; srk :fk :A�k ) g(~sr(~u)) :p(~f) :B�(~f);and, by the transitivity of ) ,~u :�� ) g(~sr(~u)) :p(~f) :B�(~f):Let (box(t))r = g(~sr(~u)).At a (2E)-node of D we have a �gure~u :� ) t(~u) :2A ,~u :� ) unbox(t)(~u) :A28



which corresponds to a natural deduction step from � ) 2A to � ) A. By the realization �we have �� ) A�. Use the standard transformation (: E) from 6.5 to construct h(~x) and apure proof ~u :�� ) h(~u) :A�:Put (unbox(t))r = h.J7 Standard provability interpretation of LP and ILPThe Logic of Proofs is meant to play for a notion of proof a role similar to that played by theboolean propositional logic for the notion of statement. In principle LP models any systemof proofs with a proof checker operation capable of internalizing its own proofs as terms (cf.[22]). In particular, any proof system for the �rst order Peano Arithmetic PA (cf. [8], [9], [19],[23]) provides a model for LP with G�odel numbers of proofs being a instrument of internalizingproofs as terms. Although the soundness ()) does not necessarily refer to the arithmeticalmodels of LP , PA is convenient for establishing the completeness (() of LP. Given LP 6` Fone can always �nd a proof system for PA along with an evaluation of variables in F whichmakes F false (cf. [5]).Under �1 and �1 we mean the corresponding classes of arithmetical predicates. We willuse '; to denote arithmetical formulas, f; g; h to denote arithmetical terms, i; j; k; l; n todenote natural numbers unless stated otherwise. We will use the letters u; v; w; x; y; z todenote individual variables in arithmetic and hope that a reader is able to distinguish themfrom the proof variables. If n is a natural number, then n will denote a numeral correspondingto n, i.e. a standard arithmetical term 0000::: where 0 is a successor functional symbol and thenumber of 0's equals n. We will use the simpli�ed notation n for a numeral n when it is safe.7.1 De�nition. We assume that PA contains terms for all primitive recursive functions(cf. [23]), called primitive recursive terms. Formulas of the form f(~x) = 0 where f(~x) is aprimitive recursive term are standard primitive recursive formulas. A standard �1 formula isa formula 9x'(x; ~y) where '(x; ~y) is a standard primitive recursive formula. An arithmeticalformula ' is provably �1 if it is provably equivalent in PA to a standard �1 formula; ' isprovably �1 i� both ' and :' are provably �1.7.2 De�nition. A proof predicate is a provably �1-formula Prf (x; y) such that for everyarithmetical sentence 'PA ` ' , for some n2! Prf (n; p'q) holds1:1We have omitted bars over numerals for natural numbers n; p'q in the formula Prf.29



A proof predicate Prf(x,y) is normal if the following conditions are ful�lled:1) (�niteness of proofs) For every proof k the set T (k) = fl j Prf (k; l)g is �nite. Thefunction from k to the canonical number of T (k) is computable. In particular, this propertyindicates that the set of theorems proven by k is �nite for every k.2) (conjoinability of proofs) For any natural numbers k and l there is a natural number nsuch that T (k) [ T (l) � T (n):7.3 Comment. Every non-deterministic normal proof predicate can be made deterministicby changing from\p proves F1; : : : ; Fn" to \(p; i) proves Fi, i = 1; : : : n":Moreover, every deterministic proof predicate may be regarded as non-deterministic by reading\p proves F1^ : : : ^Fn" as \p proves each of Fi, i = 1; : : : n":7.4 Lemma. For every normal proof predicate Prf there are computable functions m(x; y),a(x; y), c(x) such that for all arithmetical formulas '; and all natural numbers k; n thefollowing formulas are valid:Prf (k; p'! q) ^ Prf (n; p'q)!Prf (m(k; n); p q)Prf (k; p'q)!Prf (a(k; n); p'q); Prf (n; p'q)!Prf (a(k; n); p'q)Prf (k; p'q)!Prf (c(k); pPrf (k; p'q)q).Proof. The following function can be taken as m:Given k; n put m(k; n) = �z\Prf (z; p q) for all  such that there are p'! q 2T (k) and p'q 2 T (n)" .Likewise, for a one could takeGiven k; n put a(k; n) = �z \T (k) [ T (n) � T (z)".Finally, c may be put 30



Given k put c(k) = �z\Prf (z; pPrf (k; p'q)q) for all p'q 2 T (k)". Such z alwaysexists. Indeed, Prf (k; p'q) are true �1 formulas for every p'q 2 T (k), thereforethey all are provable in PA. Use conjoinability to �nd a uniform proof of all ofthem.J Note, that the natural arithmetical proof predicate PROOF(x,y)\x is the code of a derivation containing a formula with the code y".is an example of a normal proof predicate.7.5 De�nition. An arithmetical interpretation � of the LP-language has the followingparameters:� a normal proof predicate Prf with the functions m(x; y), a(x; y), c(x) as in Lemma 7.4� an evaluation of propositional letters by sentences of arithmetic, and� an evaluation of proof letters and proof constants by natural numbers.Let � commute with boolean connectives,(t�s)� = m(t�; s�); (t+ s)� = a(t�; s�); (!t)� = c(t�);(t :F )� = Prf (t�; pF �q):Under an interpretation � a proof polynomial t becomes a natural number t�, an LP-formulaF becomes an arithmetical sentence F �. A formula (t :F )� is always provably �1. Note,that PA (as well as any theory containing certain �nite number of arithmetical axioms, e.g.Robinson's arithmetic) is able to derive any true �1 formula, and thus to derive a negationof any false �1 formula (cf. [19]). For a set X of LP-formulas under X� we mean the set ofall F �'s such that F 2 X. Given a constant speci�cation CS, an arithmetical interpretation �is a CS-interpretation if all formulas from CS� are true (equivalently, are provable in PA). AnLP-formula F is valid (with respect to the arithmetical semantics) if the arithmetical formulaF � is true under all interpretations �. F is CS-valid if F � is true under all CS-interpretations�.7.6 Proposition. (Arithmetical soundness of LP)1. If LP ` F with a constant speci�cation CS, then F is CS-valid.2. If LP ` F with a constant speci�cation CS, then PA ` F � for any CS-interpretation �.31



Proof. A straightforward induction on the derivation in LP0. Let us check 2. for the axiomt : F ! F . Under an interpretation � (t :F ! F )� � Prf (t�; pF �q) ! F �. Consider twopossibilities. Either Prf (t�; pF �q) is true, in which case t� is indeed a proof of F �, thusPA ` F � and PA ` (t :F ! F )�. Otherwise Prf (t�; pF �q) is false, in which case being a false�1 formula it is refutable in PA, i.e. PA ` :Prf (t�; pF �q) and again PA ` (t :F ! F )�.JIn fact LP also enjoys the following completeness property.7.7 Proposition. ([3], [5])1. LP ` F with a constant speci�cation CS i� F is CS-valid.2. LP ` F with a constant speci�cation CS i� PA ` F � for any CS-interpretation �.De�nition similar to 7.5 provides an arithmetical model for ILP in Heyting ArithmeticHA.7.8 Theorem. (Arithmetical soundness of ILP)If ILP ` F with a constant speci�cation CS, then HA ` F � for any CS-interpretation �.8 DiscussionThere are several reasons why we chose the combinatory logic format for LP versus an es-sentially equivalent pure �-style presentation of LP without proof constants but with extraoperations on terms. The current combinatory style axiomatization of LP and ILP (de�nition2.2) is more compact than a possible pure �-style axiomatization. In addition, the former oc-cupies a position in between its two major applications: the language of modal logic and thelanguage of �-calculi.The Logic of Proofs has a solid provability semantics and a more expressive language thaneither modal logic or the �-calculus. Modal logic and traditional �-calculi cover only fractionsof ILP but instead enjoy nice symmetries, transparent models, normal forms, etc. In theirown narrow areas modal and � presentations of the same facts are usually shorter than thecorresponding presentations via proof polynomials. Thus S4 and �-calculi may be regardedas higher level languages for corresponding fragments of LP .Proof polynomials reveal the dynamic character of modality. The realization of S4 in LPprovides a fresh look at modal logic and its applications in general. Such areas as modal�-calculi, polymorphic second order �-calculi, �-calculi with types depending on terms, non-deterministic �-calculi, etc., could gain from their semantics as proof polynomials deliveredby LP . 32
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