Unified Semantics for Modality and A-terms
via Proof Polynomials *

Sergei N. Artemov |

Abstract

It is shown that the modal logic &4, simple A-calculus and modal A-calculus admit a
realization in a very simple propositional logical system £P, which has an exact provability
semantics. In £P both modality and A-terms become objects of the same nature, namely,
proof polynomials. The provability interpretation of modal A-terms presented here may
be regarded as a system-independent generalization of the Curry-Howard isomorphism of
proofs and A-terms.

1 Introduction

The Logic of Proofs (LP, see Section 2) is a system in the propositional language with an
extra basic proposition ¢: F' for “t is a proof of F”. LP is supplied with a formal provability
semantics, completeness theorems and decidability algorithms ([3], [4], [5]).

In this paper it is shown that £P naturally encompasses A-calculi corresponding to intu-
itionistic and modal logics, and combinatory logic. In addition, LP is strictly more expressive
because it admits arbitrary combinations of “:” and propositional connectives.

The idea of logic of proofs can be found in Gédel’s lecture [14] (see also [20]) first published
in 1995, where a constructive version of the modal provability logic $4 was sketched. This
sketch does not contain formal definitions and lacks some important details, without which
a realization of $4 cannot be completed. The first presentations of £P (independent of [14])
took place at the author’s talks at the conferences in Miinster and Amsterdam in 1994.

Gabbay’s Labelled Deductive Systems ([12]) may serve as a natural framework for £P. The
Logic of Proofs may also be regarded as a basic epistemic logic with explicit justifications; a
problem of finding such systems was raised by van Benthem in [6]. Intuitionistic Type Theory
by Martin-Lof [17], [18] also makes use of the format ¢: F' with its informal provability reading.

*Logic, Language and Computation’97, CSLI Publications, Stanford University, 1998.
fCornell University, 627 Rhodes Hall, Ithaca NY, 14853 U.S.A. email:artemov@hybrid.cornell.edu and
Moscow University, Russia.

2 Logic of Proofs and Proof Polynomials

2.1 Definition. The language of Logic of Proofs (LP) contains

the usual language of propositional boolean logic

proof variables zq, ..., z,,..., proof constants ag,...,da,,-..
functional symbols: monadic !, binary - and +

operator symbol of the type “term : formula”.

We will use a,b,c,... for proof constants, u,v,w,z,y,z, ... for proof variables, 1,7, k,l,m,n
for natural numbers. Terms are defined by the grammar

pu=x; | a; |!p|p1-p2|p1+p2

We call these terms proof polynomials and denote them by p,r,s,t.... By analogy we refer to
constants as coefficients. Constants correspond to proofs of a finite fixed set of propositional
schemas. We will also omit - whenever it is safe. We also assume that (a-b-c), (a-b-c-d),
etc. should be read as ((a-b) - ¢), (((a-b)-c)-d), etec.
Using ¢ to stand for any term and S for any propositional letter, the formulas are defined
by the grammar
ocu=8|01—09| 01ANog | o1Voy | —o | tio

We will use A, B,C, F,G,H, X,Y, Z for the formulas in this language, and I", A, ... for the
finite sets (also finite multisets, or finite lists) of formulas unless otherwise explicitly stated.
We will also use Z,%, 7, ... and p, 7, §, ... for vectors of proof variables and proof polynomials
respectively. If §= {sy,...,s,} and I' = {Fy,..., F,}, then §:I" denotes {s1:F1,...,s,:Fy},
VI =FV...VFE,, A\T = F;A ...\ F,. We assume the following precedences from highest
to lowest: !, -, +,:, =, A, V,—. We will use the symbol = in different situations, both formal
and informal. Symbol = denotes syntactical identity, " E " is the Godel number of E.

The intended semantics for p: F' is “p is a proof of F”, which will be formalized in the last
section of the paper.

2.2 Definition. The system L£P. Axioms:

A0. Azioms of classical propositional logic in the language of LP

Al. t:F > F “verification”
A2. t:(F - G) — (s:F — (t-s):G) “application”
A3. t:F — t:(t:F) “proof checker”
Af. s:F — (s+t):F, t:F — (s+t):F “choice”

Rules of inference:

'FF—->@G 'k F
R1. -G “modus ponens”.

R2. if A is an axiom A0 Aj, and c a proof constant, then F c:A “necessitation”

The definition of the intuitionistic logic of proofs ZLP can be obtained from the definition of
LP by replacing A0 by the list of axiom scheme AQI for the propositional intuitionistic logic.

A Constant Specification (CS)in LP (ILP) is a finite set of formulas ¢;: Ay, ..., ¢y Ay such
that ¢; is a constant, and F; an axiom A0 — A4 (A0I, A1 — A4 respectively). Each derivation
in LP (ZLP) naturally generates the CS consisting of all formulas introduced in this derivation
by the necessitation rule.

2.3 Comment. The system LP is correct and complete with respect to the provability
semantics in a classical formal system, e.g. Peano Arithmetic PA ([3],[5], cf. also Section 7
of this paper). ZLP is correct with respect to the provability interpretation for either PA or
the intuitionistic arithmetic HA. We do not address the issue of arithmetical completeness of
ZLP in this paper.

Proof constants in LP stand for proofs of “simple facts”, namely propositional axioms and
axioms A1 — A/. In a way the proof constants resemble atomic constant terms (combinators)
of typed combinatory logic (cf. [24]). A constant c¢; specified as ¢; : (A — (B — A)) can
be identified with the combinator k*# of the type A — (B — A). A constant ¢, such that
ca:[(A—= (B—C)) = ((A— B) — (A— (C))] corresponds to the combinator s*%:¢ of the
type (A— (B—C)) = ((A— B) — (A—(C)). The proof variables may be regarded as term
variables of combinatory logic, the operation “-”
LP-formula t: F' can be read as a combinatory term ¢ of the type F. Typed combinatory logic
CL_, thus corresponds to a fragment of £P consisting only of formulas of the sort ¢: F' where
t contains no operations other than “-” and F is a formula built from the propositional letters
by “=” only.

There is no restriction on the choice of a constant ¢ in R2 within a given derivation. In
particular, R2 allows to introduce a formula c: A(c), or to specify a constant several times as
a proof of different axioms from A0(I), A1 Aj. One may restrict LP to injective constant
specifications, i.e. only allowing each constant to serve as a proof of a single axiom A within a
given derivation (although allowing constructions c¢: A(c), as before). Such a restriction does
not change the ability of LP to emulate classical modal logic, or the functional and arithmetical
completeness theorems for £P (below), though it will provoke an excessive renaming of the
constants.

as the application of terms. In general an

The deduction theorem holds in £P and ZLP.

NArB = TI'FA—B,

and the substitution lemma: If T'(xz, P) &= B(x, P) for a propositional variable P and a proof
variable xz, then for any proof polynomial t and any formula F

[(z/t,P/F) - B(z/t, P|F).

2.4 Proposition. (Lifting Lemma) Given a derivation D in LP or ZLP of the type
§:T,AFF,
one can construct a proof polynomial t(Z,Y) such that

§:T,9:AFt(5,9): F.

Proof. By induction on the derivation §: ')A+ F. If F = s;: G; € §:T', then put t :=ls;
and use A8. If F = D; € A, then put ¢ :=y;. If F' is an axiom A0(I), A1 A4, then pick a
fresh proof constant ¢ and put ¢ := ¢; by R2, F - ¢: F. Let F be introduced by modus ponens
from G — F and G. Then, by the induction hypothesis, there are proof polynomials (s,)
and v(8, ¢) such that u:(G — F) and v:G are both derivable in £P from §:T',7: A. By Al,
§:T,y: At (uv): F, and we put ¢t := wv. If F' is introduced by R2, then F' = ¢: A for some

t:=lc.
R |

It is easy to see from the proof that the lifting polynomial ¢(&, %) is nothing but a blueprint
of D. Thus LP accommodates its own proofs as terms. The necessitation rule

FF = Fp:F for some proof polynomial p,

is a special case of Lifting. Note, that here p is the blueprint of a proof of F' implicitly
mentioned in “+ F”.

LL.” L('”

2.5 Comment. Operations and are present for deterministic proof systems (systems
where each proof proves only one theorem) as well as for non-deterministic ones (where a proof
can prove several different theorems). In turn, “+” is an operation for non-deterministic proof
systems only. Indeed, by A/ we have s: FAt:G — (s+1t): F A (s+1t):G, thus s + t proves
different formulas. The differences between deterministic and non-deterministic proof systems
are mostly cosmetic. Usual Hilbert or Gentzen style proof systems may be considered as either
deterministic (by assuming that a proof derives only the end formula/sequent of a proof tree)
or as non-deterministic (by assuming that a proof derives all intermediate formulas assigned
to the nodes of the proof tree). The logic of strictly deterministic proof systems was studied

in [1], [2], and in [15], where it meets a complete axiomatization (system FLP).

3 Realization of modal logic in LP

It is easy to see that a forgetful projection of LP is correct with respect to $4. Let F'° be the
result of substituting OX for all occurrences of ¢: X in F, and '’ = {F° | F € T'} for any
set I' of LP-formulas. A straightforward induction on a derivation in £P demonstrates that
if LP F F, then 4 + F°. As it was shown in [3], [5] the converse also holds. Namely, LP
suffices to realize any &4 theorem.

Under Z84 we mean the intuitionistic modal logic on the basis of &4 (cf. [7], [16], [21],
where Z84 was studied under the name IS45). Basically the same algorithm (below) provides
a realization of ZS84 in ZLP.

3.1 Example. 7S+ (DAAOB) — O(AAB)
In ZLP the corresponding derivation is

1. A, B+ AAB, by propositional logic
2. 2:A,y:BF t(z,y): (AAB), by Lifting
3. Fz:ANy:B — t(z,y): (AAB), from 2.

3.2 Example. IS8+ (DAVOB) — O(AVB).
In ZLP the corresponding derivation is

.A—- AVB, B — AVB

.a:(A— AV B), b:(B— AV B), by necessitation,

z:A— (a-x):(AVB), from 2 by A2

.y:B — (by):(AVB), from 2 by A2

ax:(AVB) — (ax+by): (AVB), by:(AVB) — (az+by):(AVB), by A4
(x:AVy:B) = (ax+by): (AVB)

By an LP-realization of a modal formula F' we mean an assignment of proof polynomials to
all occurrences of the modality in F', Let F" be the image of F' under a realization r. Positive
and negative occurrences of modality in a formula and a sequent are defined in the usual way.
Namely

1. an indicated occurrence of O in OF is positive;

2. any occurrence of O in the subformula F' of G- F, GAF, FAG, GVF, FVG, OF and
I' = A, F has the same polarity as the corresponding occurrence of O in F;

3. any occurrence of O in the subformula F of —F, FF— G and F,I" = A has a polarity
opposite to that of the corresponding occurrence of O in F'.

3.3 Comment. In a provability context OF is intuitively understood as “there exists a proof
x of F”. After a skolemization, all negative occurrences of O produce arguments of Skolem

functions, while positive ones give functions of those arguments. For example, OA — OB
should be read informally as

dx “xzis a proof of A7 — dy “y is a proof of B”,
with the Skolem form
“xis a proof of A7 — “ f(z) is a proof of B”.

The following definition partially captures this feature. A realization r is normal if all negative
occurrences of O are realized by proof variables.

3.4 Theorem. IfZS4F F, then ILP = F" for some normal realization r.

Proof. Consider a cut-free sequent formulation of Z$, with sequents I' = F', where I' is a
finite set of modal formulas. Axioms are sequents of the form S =- S, where S is a propositional
letter, and the sequent 1. = . Along with the usual structural rules and rules introducing
boolean connectives there are two proper modal rules (cf.[24]):

AT =B Oor = A
ki (e =% (50
OA,T = B and O = 04

(O{Aq,..., Ay} ={0A,,...,04,}).

If Z84 - F, then there exists a cut-free derivation T of a sequent =- F'. It suffices now to
construct a normal realization r such that ZLP = A" — B” for any sequent I' = B in 7. We
will also speak about a sequent I' = B being derivable in ZLP meaning ZLP - AT' — B. Note
that in a cut-free derivation 7 the rules respect polarities, all occurrences of O introduced by
(= 0O) are positive, and all negative occurrences are introduced by (O =) or by weakening.
Occurrences of O are related if they occur in related formulas of premises and conclusions of
rules; we extend this relationship by transitivity. All occurrences of O in 7 are naturally split
into disjoint families of related ones. We call a family essential if it contains at least one case
of the (= 0O) rule.

Now the desired r will be constructed by steps 1 3 described below. We reserve a large
enough set of proof variables as provisional variables.

Step 1. For every negative family and non essential positive family we replace all occur-
rences of O by “z:” for a fresh proof variable .

Step 2. Pick an essential family f, enumerate all the occurrences of rules (= O), which
introduce boxes of this family. Let ny be the total number of such rules for the family f.
Replace all boxes of the family f by the term

(1 + ... +vn,),

where v;’s are fresh provisional variables. The resulting tree 7g is labelled by ZLP-formulas,
since all occurrences of the kind OX in 7T are replaced by ¢: X for the corresponding ¢.

Step 3. Replace the provisional variables by proof polynomials as follows. Proceed from
the leaves of the tree to its root. By induction on the depth of a node in 7y we establish
that after the process passes a node, a sequent assigned to this node becomes derivable in
ILP. The axioms S = S and 1 = are derivable in ZLP. For every rule other than (= 0O)
we do not change the realization of formulas, and just establish that the concluding sequent
is provable in ZLP given that the premises are. The induction steps corresponding to these
moves are straightforward.

Let an occurrence of the rule (= O) have number ¢ in the numbering of all rules (= 0O)
from a given family f. This rule already has a form

y1: Y1, .,y Yy =Y

3

y1: Y1, o,y Y = (ul—i—...—l—unf):Y

where y1,. .., yg are proof variables, uy, ..., uy,, are proof polynomials, and u; is a provisional
variable. By the induction hypothesis, the premise sequent y1:Y7,...,yr: Yy = Y is derivable
in ZLP, which yields a derivation of

y1:Y1,...,yp: Yy = Y.
By Lifting Lemma (1.4), construct a proof polynomial ¢(y1,...,y,) such that
y1: Y1, ye Ye = Y1, -2, yn) Y
is derivable in ZLP. Since
IEPI—t:Y—)(u1—I—...+ui,1+t+ui+1—I—...—l—unf):Y,
we have
TP Fyr:Y, ... ,yp: Yy = (ul—l—...—l—ui,l—|—t—|—ui+1—i—...+unf):Y.

Now substitute #(y1,...,y,) for u; everywhere in the tree 7y. Note, that (yi,...,y,) has no
provisional variables, there is one provisional variable (namely u;) less in the entire 7g. All
sequents derivable in ZLP remain derivable in ZLP, the conclusion of the given rule (= 0O)
became derivable, and the induction step is complete.

Eventually, we substitute terms of non-provisional variables for all provisional variables in
To and establish that the corresponding root sequent of 7g is derivable in ZLP. Note that the
realization of O’s built by this procedure is normal. Moreover, the formula F" may be regarded
as the result of a skolemization procedure with respect to quantifiers on proofs (Comment 3.2)
with the corresponding instantiation of Skolem functions by proof polynomials.

3.5 Comment.

projection:

The former of these formulas is a meaningful specification of the operation “+”. In a contrast,

It follows from 3.3 that Z&4 is nothing but a lazy version of ZLP when we
don’t keep track on the proof polynomials assigned to the occurrences of O. Each theorem
of I8 admits a decoding via ZLP as a statement about specific proofs.
ZLP is more rich than the one of Z84. In particular, Z84 theorems admit essentially different
realizations in ZLP. For example, consider two theorems of ZLP having the same modal

x:FVy:F — (x+y):F and z:FVx:F — x:F.

the latter one is a trivial tautology.

4 Gentzen formulation of Z(LP

The Gentzen style system ZLPG for ZLP can be defined as follows (cf. the system G2i from
[24]). Sequents in ZLPG are all of the form I' = F, where I' is a multiset of £P-formulas, and

F' is an LP-formula.

Axioms of ZLPG are sequents of the form P,I" = P, where P is either a propositional letter

or a formula of the sort ¢: F', and sequents of the form L, I' = F.

Rules of ZLPG are

A B T'=C
AANB,T'= C

Al=C

B,I'=C

AVB, T = C

I'= A4

B, I'=C

(LA)

(LV)

A AT = C

A—B,I'=C

(LC)

Al =C

All'=B

— (L
t:A,I' = B

)

(L —

I'= A I'= B

(RA)

I' = AAB

— (RV)
I' = AgVA, (i:(),l)

ATl'= B
— (R =)
I'=A—B

= A ATl = B

(Cut)
I, I’ = B

I'=1t:A
I'= lt:t:A

(R!)

The language of

I'=t:A I'=1t:A4

(RI+) — (Rr+)
= A/ (t+s):A = A (s+1):A
r A— B r A P
= s:(A — B) =t (R I'= A (Re),
I'= (s-1):B I'=cA

where in (Rc)-rule A is an axiom A0I — A of the Hilbert style system for ZLP, ¢ is a proof
constant and D is the standard derivation of I' = A. Under the standard derivation here we
mean the following. If A is A0I (i.e. a propositional axiom), then D is the straightforward
cut-free derivation of I' = A in the Gentzen style system for Znt. For axioms A1 A4 the
standard derivations are respectively

DI
FT=F
t:F,[= F

-
=t F->F
where D' is the straightforward cut-free derivation of F,T" = F in the Gentzen style system

for Int;
s:(F—=G),t:F\I'=> s:(F—>G) s:(F—-G),t:F,I'=t:F

si(F—G),t:F.I' = (s-t):G |
I'=s:(F->G)—=(t:F—(s-t):G)

t:FI' =t F t:F,I' = t.F
tFT = Wt P tF = (t+s):F
= t:F=t:t:F T = t:Fo(t+s):F

Under ZLPG™ we mean a cut-free fragment of ZLPG.
4.1 Theorem. Cut elimination holds for ILP.
Proof. We shall deliver a syntactical proof that ZLPG + " = A yields ZLPG~ T = A.

4.2 Definition. A level of a cut is the sum of the depths of the deductions of the premises.
The rank rk(A, D) of a given occurrence of A in a derivation D is defined by the following
induction on the depth of this occurrence in D. For a term or a formula X by | X| we denote
the total number of occurrences of propositional, proof variables and constants, propositional

and functional symbols in X. If X € {P, L, I'} in a derivation D consisting of an axiom
P,T'= Por L,I' = F, then rk(X,D) = | X]|.

For all the rules of ZLPG ranks of the corresponding occurrences of the side formulas
coincide. For the rule(LA)

rk(AAB,D) = rk(A,D) + rk(B,D) + 1.

Likewise for the rule (RA), (LV) and (R—).

For (RV), case j =0,
Tk(Ao\/Al,D) = Tk(A[],D) + ‘A1| + 1,

similarly for j = 1.

For (L —)

rk(A—B,D) = rk(A, D)+ rk(B,D) + 1.
For (L)

rk(t:A,D) = rk(A, D)+ |t|.
For (R!)
rk(1t:t: A, D) = rk(t:A, D)+ ||

For (RI+)

rk((t+s):A,D) = rk(t:A,D) + |s| + 1.
For (Rr+)

rk((t+s):A,D) = rk(s:A,D) + |t| + 1.
For (R-)

rk((s-t):B,D) = rk(s:(A—B),D) +rk(t:A, D)+ |(s-t):B].

For (Rc)

rk(c:A,D) = rk(A,D)+ |1].
Note that rk(A,D) = |A|.

For (LC) the rank of the occurrence of A in the conclusion of the rule is the maximum rank
of the indicated occurrences of A in the premise sequent. The rank of the cut rule

r= A AT = B
(Cut)

I,I'= B

is the maximum rank of the indicated occurrences of A in the premise sequents. The cutrank
of the deduction D is the maximum of the ranks of the cuts occurring in D.

From the definitions it follows easily that

10

1. |A| <7rk(A,D) and rk(A, D) = |A| if D does not use the rule (R-).

2. rk(A, D) monotonically increases for the related occurrences of A with the increase of
depth.

3. Let I' = A be an occurrence of a sequent in a derivation D. Let D’ be a a subderivation
of ' = A in D. Suppose D" is another derivation of I' = A such that

rk(X,D") < rk(X, D)

for each occurrence of a formula X in I' = A. If we replace D' by D" in D, then it will not
increase the ranks of formulas in D outside D".

4.3 Lemma. (Rank- and depth-preserving invertibility of the rule (R—)). If D is a deriva-
tion of I' = A— B, then there is a derivation D' of A,T' = B such that

the depth of D' is not greater, then the depth of D,

the cutrank of D' equals to the cutrank of D,

rk(F,D') = rk(F,D) for all formulas from T,

rk(A,D')+rk(B,D')+1 = rk(A— B, D).

™o e =~

Proof. An induction on the depth of D. The base case corresponds to an axiom. Since
A— B is neither atomic nor of the form ¢: F' the case when A— B is a principal formula of an
axiom is impossible. If D is an axiom 1,A = A— B, then put D’ to be L, A, A = B. For
the induction step consider two possibilities. If A — B is the side formula of the last rule in
D, then using induction hypothesis, replace A = A— B in the premise(s) of the last rule by
A,A = B. If A— B is the principal formula of the last rule in D, then the deduction ends
with
Dy
ATl'= B
I'=A-B

In this case put D' to be D;.
<

4.4 Lemma. (Stripping Lemma) Let D be a cut-free derivation of ' = t: A. Then there is
a derivation D' of ' = A such that

1. the cutrank of D' is less then the rank of the indicated occurrence of t: A in D,

2. rk(F,D') = rk(F,D) for all formulas from T of the end sequent,

3. 1k(A, D) <rk(t: A, D) for A and t: A being the antecedents of the end sequents of D’
and D respectively.

11

Proof. Induction on the depth of D. If D is an axiom t: F, A = t:F, then let D' be the
derivation
Dy
F.I'=F (L),
t:F,I' = F

where D1 is a standard cut-free derivation of F,I' = F. Note, that such a derivation does not
use the rule (R-), therefore rk(X,D’) = |X| = rk(X,D) for all formulas from T'. Likewise,
rk(F,D') = |F| < rk(t: F,D).

The induction step. The case when ¢: A is a side formula of the last rule in D is trivial.
Let t: A be the principal formula of the last rule (R!) in D, then the deduction ends with

D,
I'=1t:A
I'=t:t:A

In this case D; is a cut-free derivations satisfying also the requirements 2. and 3. of the
lemma.
If the last rule in D is (RI+), then the deduction ends with

D,
I'=1t:A
' = (t+s):A

By the induction hypothesis, there exists a derivation D} of I' = A satisfying the lemma’s
conditions for the derivation D;. Put D’ to be D). The case (Rr+) can be treated similarly.
If the last rule in D is (R:), then the deduction ends with

Dy Do
I'=>s:(A—»B) I'=1:4
I'=(s-1):B

By the induction hypothesis, there exist derivations D} of ' = A — B and D), of I' = A
satisfying the lemma’s conditions. Take the derivation DY of A,I' = B from the inversion
lemma 3.3 and combine the new derivation D3

D), DY
's=A AIl'=2-B
rr=2=8

Using the contraction (LC) we get the desired derivation D' of T' = B. It is easy to check
that all the requirements of the lemma are met.

12

If the last rule in D is (Rc), then D is

D1
I'= A
I'=c A
Let D' be D;.
|

Now we return to the proof of theorem 4.1. Our strategy is to eliminate the uppermost cuts. In
order to save expositions of some well known constructions we will refer to the corresponding
steps of the proof of the cut elimination theorem 4.1.2 from [24] when convenient.

4.5 Lemma. Let D be a derivation ending in a cut

D Do
= A AT = B
I,I' = B

such that D contains no other cuts. Then we can transform D into a derivation D' of the same
sequent I, 1" = B such that cutrank(D')<cutrank(D) = max {rk(A,D;),rk(A, Dy)} without
an increase of the ranks of the formulas from I', T, B.

Proof. An induction on the rank of the cut rule, with a subinduction on its level. There
are then three possibilities:

1. at least one of Dy, Ds is an axiom P,I' = P or 1,I' = F;

2. not 1. and the cutformula is not principal in at least one of the premises;

3. not 1. and the cutformula is principal on both sides.

Case 1. Cut can be eliminated by the standard reductions ([24]).

Case 2. We permute the cut upward in a standard way (cf.[24]) without changing its rank as
well as the ranks of all formulas in the end sequent of the derivation, until we find ourselves
in situations number 1 or number 3.

Case 3. The cutformula is principal in both premises and neither of the premises an axiom.
The induction hypothesis is that the claim of lemma has been shown for all cuts of rank less
than rk(A, D) and of rank equal rk(A, D), but level less than the one of the given cut.

The rules corresponding to propositional connectives are treated in a usual way (cf.[24]).
There is one additional concern here compared to [24]: we have to make sure that our reduc-
tions do not increase the ranks of the side formulas from I',I". As an example, consider the

13

case (R —). The original deduction is

Dy Dy Dy
A= B I'sA I'B=C
= A—>B I'N"A-B=C

This is transformed into

Dy Dy
I'=A I'A=B Dy
I'I'= B I'"B=C

r'r'.T, = C

We have eliminated the old cut but have got two new cuts instead, both having lower ranks.
After a number of contractions in the end sequent we get the desired derivation.

The new cases emerge when the cutformula is of the form ¢: F. In all those cases the right
premise is just introduced by (L:). So, we distinguish the cases by their left premises.

Case (R!). The derivation is

Dl DQ
F=1tA t: AT = C
I'=1t:t:A Ht:t:A ' = C
rr=c<c

This is transformed into a derivation with a lower ranked cut
D1 Dy
=1t:A t:A T = C
rr=c

Case (Rc) is treated is a similar way.

Case (RI+) (and (Rr+) by a similar argument). The derivation

Dl D2
=1t:A ATl = C
I'= (t+5s):A (t+s): AT =C
rr=c<c

14

should be transformed into one with a lower cutrank

D,
Dy AT = C
F=1t:A AT = C
r.r'=~cC

Case (R-):

Dy Dy 2
I'= s:(A—B) I'=1t:A B, I"=C
I'=(s-t):B (s-t):B,I" = C
rr=c<c

We transform it into a derivation with a lower cutrank as follows. By Stripping Lemma (4.4)
without a rank increase we get derivations

Dy Dy
I'= A—>B I'= A

From Dj by 4.3 without the rank increase of the side formulas we get a derivation

D}
rA=pB "’

where
rk(A, DY), rk(B,Dy) < rk(A— B,Dj) < rk(s:(A— B),Dy) < rk((s-t): B, D).

The transformed derivation in this case will be

D} Dy
I'= A A,FﬁB DQ
I\l = B B.I'=C
rrr=c

Again, use some contractions in the end sequent to get the desired derivation. We have
eliminated the old cut and have created two new ones and, may be, some more in D} and Dj
as a result of the Stripping. By 4.3 and 4.4 all new cuts have lower rank.

This ends the proof of lemma 4.5.
<

15

4.6 Lemma. Let a derivation D contains not more than one use of the cut rule. Then by a
finite chain of reductions it can be transformed into a cut-free derivation D' of the same end
sequent without changing the ranks of the formulas from the end sequent.

Proof. An induction on the n =cutrank(D). The base case n = 0. Then D is already cut-
free. The induction step. Assume n > 0, thus, D contains a cut. Without loss of generality
assume that the cut rule is the last rule in D. By Lemma 4.5 transform D into D; with
cutrank(D1) <cutrank(D). Beginning with the uppermost cuts in D; eliminate them all using
the induction hypothesis.

<

To conclude the proof of Theorem 4.1 use Lemma 4.6 to eliminate every cut in a given
derivation beginning with the uppermost ones.
<«

5 Natural deduction system and \-terms for ZLP

5.1 Definition. The natural deduction system LPN for LP is obtained from a usual natural
deduction system for propositional logic (cf. [11], [24]) in the language of LP extended by the
following rules

s:(A—-B) t:A 1) i - B) i (1)
(s-t):B A lt:t: A
t:A t:A z
(+1) T (+) (cl),
(t+s):A (s+1):A c:A

where A is an axiom of the Hilbert version of £P (Definition 2.2), ¢ is a proof constant, and D
is the standard derivation of A. Under the standard derivation of A we mean the following.
If A is an axiom A0, then D is the straightforward normal derivation of A in the natural
deduction system for Znt. For other axioms A1 — AJ the standard derivations are

[s:(A=B)] [t:4]

[t: A] (s-t):B
A t:A—(s-t):B
t:A— A s:(A—=-B)—(t:A—(s-t):B)

16

[t: A] [t: A]
lt:t: A (t+s): A
1A=t A t:A—)(t-i-S):A-

Note that a standard derivation has no undischarged premises.

5.2 Definition. Under ZLPN we mean an intuitionistic version of of £LPN which is obtained
from LPN by omitting the double negation rule

[—A]
D
€
A
Under LPN T = A or ZLPN + T = A we mean “A is derivable from assumptions I'” in
LPN or in ZLPN respectively.

A standard theorem relating Hilbert, Gentzen and natural style derivations in £P holds.
Namely the following are equivalent

L.TFzrp A

2.IPGFET = A

3. ILPN +T = A.

This fact is established by the standard mutual simulations of derivations in all three systems
(cf. section 3.3 in [24]). In fact for any source derivation of size s the simulation runs in
polynomial time and produces a derivation of size O(s).

The following analog of the Lifting lemma 1.4 holds for ZLPN.

5.3 Corollary. If ILPN + 5:T,A = A, then for any proof variables ij one can construct a
proof polynomial t(Z, %) such that ZCPN + §:T,4: A = t(5,7): A.

Proof. A straightforward induction of the depth of a derivation. The number of steps in the
algorithm constructing D’ is bounded by a polynomial of the length of D.
<

5.4 Definition. Contractions for ZCPN include all usual contractions for propositional logic
(AL, VL, —-contractions, permutation contractions) (cf. section 6.1.3 in [24]), and the new
contractions

17

--contraction

Dr Dy
s:(A—B) t:B
(s-t):B
B

+-contraction

I-contraction

c-contraction

D
A
c: A
A

Dy D,
s:(A— B) t:A
, A— B A
transforms into ,
B
D b}
. t:A
transforms into
A
D
transforms into t: A,
D
transforms into A.

An obvious new permutational contraction should also be added that allow “pulling” the
(: E) upwards through the (VE) rule. An derivation D is normal if no contraction is possible

anywhere in D.

5.5 Theorem. (From Gentzen to normal deductions in ZLP)

ILPG =T = A ifand only if ZILPN T = A.

Moreover, a cut-free derivation in ZLPG transforms into a normal derivation in TLPN .

18

Proof. A usual argument in the style of Section 6.3 from [24].
<

5.6 Theorem. Normalization holds for ZCPN

Proof. Take a derivation of the sort I' = A in ZLPN, transform it into a derivation of
I' = A in ZLPG, perform a cut elimination, and transform the resulting cut-free proof back
into an ZLPN derivation. By Theorem 5.5, the resulting derivation is normal. One could write
down a direct algorithm of normalization of derivations in ZLPN that will essentially repeat
the reduction steps for cut elimination in ZLPG. Moreover, on the basis of the reductions from
the proof of Theorem 4.1 one could establish a strong normalization property of ZLPG and
ILPN .

<«

Extending the term calculus for the intuitionistic logic ([24]) we can identify the full ZLPA
with a system of typed A-terms ZLPN X in a natural way. In ZCPN A A-terms have the format
t: F where the type F' is an LP-formula, and the term ¢ is built from the proof variables by
specific operations (below).

5.7 Definition. We define a A-term calculus ZLPN X for the full ZCPN. The language of
ZLPN X has only formulas of the type t: F' where F is an LP-formula, and ¢ is a term built
from the proof variables by atomic operations p, p;, k;, EZ’U, E,, App, P, U, B, S;, C,
(j=0,1), and A-abstraction. The arities of the operations will be made clear in the rules. The
first eight clauses of come directly from the term calculus for Znt ([24], 2.2.2). We will omit an
obvious description of free and bounded variables. As usual, [A] denotes a discharged premise

A. In the derivations denoted in this definition by
[w: F]

p:G

the variable w occurs free neither in F| G nor in any undischarged premise of the derivation.

t: L
— (LEY)
aziom y:F (y is a variable) EL(t):A
s:tA t:B t:(AgNA
SA BBy LA o1y, (am)
p(s,t): (AAB) p;(t): A,

19

[u:A] [v:B]

t:Aj 7 € {Oa l}a (VIt) (VEt)
kj(t):(AgVAL) t:(AVB) s:C ¢:C
E;/’v(t,s,s') :C
[u: A
g I s:(A — B) t:A (= BY)
Aut: (A — B) App(s,t):B
q:$:(A— B) r:t:A (-11) q:t: A (- 1)
P(g,r):(s-t):B U(g): A
CEL) TUH e o), (+1)
B(q):t:t: A Si(g):(to+t1):A

Note that the list of rules above suffices to build a A-term p without free variables which
internalize in ZLPN'X the standard ZLPN -derivation of an axiom A. In particular, ZCPN) +
p:A. For example, the A-term version of the standard derivation of axiom A3 is

vit: F
B(v) t:t: F
AM.B():(t: F—=t:t: F)

The last rule of ZCPN) is

D
p:A (clt),
C(p):c:A

where D is the A-term version of the standard derivation of A in ILPN .

5.8 Definition. In the term notation the contractions for the ZCPN X are
1. p](p(t()utl)) cont t] (j € {07 1}))

20

2. By . (kjttot1) cont tj[z/t],

3. App(\z.t,s) cont t[z/s],

4. UB®) cont t,

5. UC()) cont t,

6. UP(to,t1)) cont App(U(ty), U(t)),
7. US;(t) cont U(L),

8. fIEY . (kjtito,t1)] cont Ey . (kjt,f[to],f[t1]), where f is another eliminating oper-

Z0,T1 T0,T1

ator (i.e. one of p;, App, U).

The contractions 1 - 5 are the called detour contractions, 6 - 8 are permutation contractions.
A A-term t is normal if no contractions are possible in ¢.

It follows from the definitions that
ILPN FT = A iff ILPNAE Z:T = t(Z): A for some ZLPN A-term t.

5.9 Theorem. (Normalization of ZLPN A-terms) Every A-term for ZLPN X is normalizing.

Proof. Translate the proof of theorem 5.6 from the language of derivations into the language
of MA-terms. In fact one can establish a strong normalization of ZLPN A-terms with respect to
the contractions 5.8.

<

6 Abstraction in Logic of Proofs

In this section we show that ZLP provides a standard provability semantics for the operator of
A-abstraction. This matches our earlier observation (Section 3), that Z$4-modality is realized
by proof polynomials. Thus modality and A-terms are objects of the same sort, namely, they
are all proof polynomials. Through a realization in ZLP both modality and modal A-terms
receive a uniform provability semantics.

The defined abstraction operator A*z on proof polynomials below is a natural extension
of the defined A-abstraction operator A*z in combinatory logic (cf. [24]).

6.1 Definition. Under ground (!I) rule we mean the rule (!I) where the principal proof
polynomial ¢ contains no variables. An ZLPN -derivation D is pure if it uses no rules other

21

than (-I), (cI), and ground (!I). It is clear that every pure derivation is normal since it has
no elimination rules.

6.2 Lemma. (Definable abstraction) Let D be a pure ZLPN -derivation of a type
p:lx: A= tz):B

such that x does not occur in p:1', A, B. Then one may construct a proof polynomial *x.t(x)
and a pure TLPN -derivation D' of the type

P = Nuzit(z):(A— B).

Proof. The base case is the depth of D equals one. There are two possibilities.

1. Dis t(z): B and t(x) contains an occurrence of x. Then ¢(z): B = z: A. Indeed, by the
definition of a natural derivation of the depth 1, the formula #(z): B should occur in p:T", z:: A.
Since z does not occur in p:T', A, B the only remaining possibility is when #(z): B coincides
with z: A. Let D’ be the pure derivation (without undischarged premises) of (a-b-¢): (A— A)
where a, b, ¢ are proof constants specified by the conditions (cf. [24], section 1.3.6.)

a:([A=(A—=A)=A)]—=[(A=(A—=A))—= (A= A4)))
b:[A—=((A—A)—A)]
c:[A—= (A= A)].
Let AM*z.z = (a-b-c¢). In fact this case coincides with the presentation of Mz4.z as
s AAARAAARAA iy combinatory logic (cf. [24]).
2. Dis t: B and t does not contain an occurrence of z. Then t: B € 5:I'. Let D' be
[B]
A—B
B—(A—B
(A=B)
b:(B—(A—B)) t:B

(b-1):(A— B)

(1) .

Let Mz.t = b-t. This is the well known equality *z4.t% = kB4t of combinatory logic.
The induction step corresponding to the ground (!I) rule is treated similarly to the case
2. Consider the case (-I). Let a derivation D from the premises p:T",z: A end with
s:(Y—=B) t:Y
(s-t):B '

22

By the induction hypothesis, we have already built pure derivations from the premises p": I" of
MNz.s:(A— (Y — B)) and A*z.t: (A—Y). From them we construct a pure derivation D’

D
(A—>(Y—>B))—>((111%Y)—>(A—>B))
c:(A=-(Y—>B)=»((A=Y)—>(A—DB))) Nzr.s:(A—=(Y—=DB))
(c-Nz.8):(A=>Y)—=(A—B)) Nzt (A=Y)
(c- Nz.s-Nxit): (A= B)

where D; is the standard derivation of a propositional axiom. Let *z.(s-t) = (¢-A*z.s-X*x.1).
In combinatory logic notations

NegA sY7BYY — gAY B*p s * ot

6.3 Comment. In ZLPN M-abstraction is presented by a set of proof polynomials de-
pending on a context (e.g. an ZLPN-derivation). In this respect the realization from 6.2 of
A-abstraction by proof polynomials is similar the realization of Z$-modality which is decom-
posed in 3.3 into a set of proof polynomials depending on a context (an ZS4-derivation).

The operation A* suffices to emulate the traditional A-abstraction. In fact it cannot be
easily extended from the pure to more general derivations without sacrificing some desired
properties. We need to keep the format p:T', x: A = t(x): B throughout all the derivation D in
order to preserve an inductive character of the definition. The restriction “z does not occur in
p:T', A, B” is needed to guarantee the correctness of 3-conversion (below) for A*-abstraction,
though it rules out (!I). Note, that the rule (!I) does not admit abstraction anyway. Indeed,
in ZLPN we have

r:A=lrix: A,

but for no proof polynomial p
= p:(A—x:A)

since A—1x: A is not provable in ZLP.

6.4 Comment. The dual operation to A-abstraction is G-conversion
Azt tB)st 1spy Bzt /sh.

[B-conversion is naturally presented as the following transformation of pure derivations in

ILPN:

23

Mzt(z): (A— B) s:4

transforms into

(Nzt(z)-s):B

The rule of n-conversion

Az Pt 1, if © is not free in t

is treated in the same way. Finally, a-conversion corresponds to an obviously valid rule of
renaming bounded variables in ZLPN -derivations with abstraction.

All other standard A-term constructors for Znt can also be realized as operations on proof
polynomials. This is a straightforward corollary of the fact that Znt is a fragment of ZLPN
and of the Lifting rule for ZCPN. Indeed, if ZCPN + T’ = B, then by induction on the given
proof one can construct a proof polynomial p(¢) such that ZCPN + i:T = p(¥): B. However,
for the sake of clear presentation of A\-terms as proof polynomials we will explicitly build the
proof polynomials corresponding to standard A-terms constructors.

6.5 Definition. We define a list of standard translations of term constructors from ZCPN A

to corresponding derivations in ZLPN .

A-term constructor

y: F

stA t:B
p(s,1):(AAB)

M 7 c {0’ 1}
pj(t): A;

t:Aj
kj (t) : (A() \/Al)

j €40, 1}

corresponding derivation in TLPN

y: F

D
c:(A— (B— AAB)) s:A

(c-s):(B— AAB) t:B
(c-s-t):(AAB)

D
C:(Ao/\A1 —)A]) t!(Ag/\Al)
(C . t) :Aj
D

(JZ(Aj — AgVA) t:Aj
((3 . t) : (A()\/Al)

24

[u:A] [v:B]

D1 Dy

(¢ XNu.s):(B—=C)—=(AVB—C)) D3

t:(AVB) s:C §:C

(c- Nu.s- Av.8"):(AVB—=C)

t:(AVB)

E),(t,s,s'):C

where D, is

(¢ XNu.s-Xv.s - t):C

D

c:((A=C)=(B—-C)—=(AVvB—=0()))

Dy and D3 are
[u: A

s:C

Mu.s:(A— C)

[u: A]
t:B

Au.t:(A — B)

s:(A— B) t:A
App(s,t):B

[v:B]

s:C
Av.s': (B = C)

[u: A

t:B
XNu.t:(A — B)

s:(A— B) t:A
(s-t):B
D
c:(L — A) t: Ll
(s-t):A

25

D
c:(s:(A=B)—=(t:A— (s -t):B)) u:s:(A— B)
(c-u):(t:A—(s-t):B) vit: A

(c-u-v):(s-t):B

u:s:(A—B) wv:t:A
P(u,v):(s-t):B

D
vit: A c:(t:A—A) vit: A
U(v):A (c-v):A
D
vit:A c:(t:A—=t:t: A) vit: A
B(v):!t:t: A (c-v):lt:t:A
4 D
vt je{0,1} c:(tj: A= (tg +t1): A) vitj: A
Sj(’l))i(to-l-tl)!A (C-U):(tg+t1):A
D,
c:A
D d:(c:A—(A—c:A)) leier A
p:A (cIt) (dle): (A—c:A) t:A
C(p):c:A (d-le-t): A

In each case D denotes a corresponding standard ZLPN -derivation with the end rule (cI).

6.6 Theorem. (Realization of ZLPN X into ZLPN) Under standard translations from 6.5 an
ILPN \-derivation Z:T = t(Z): A becomes a pure derivation Z:T" = t"(Z): A" in the ZLPN .

Proof. A straightforward induction on an ZLPN A-derivation Z: T = ¢(Z) : A. It is imme-
diate from definition 6.5 and lemma 6.2 that each standard transformation returns a pure

derivation.

26

6.7 Corollary. (Realization of A\-calculus for Znt into ZLPN') Let D be a A-term derivation
of the type & :T = t(Z) : A in the term calculus for Int. Standard translations define an
effective step by step realization r of D as a derivation D' of Z:T = t"(Z): A in the ZLPN .

6.8 Comment. As it is easy to see that ZLPN '\ (as well as A-calculus for Znt) can be realized
in a small fragment of ZLPN consisting of pure derivations only.

We already have enough ingredients to demonstrate that the Logic of Proofs can emulate
modal A-calculi.

We will show how ZLPG naturally emulates the modal A-calculus for Z84 ([7], [16], [21], cf.
also [10]) and thus supplies modal A-terms with standard provability semantics.

6.9 Theorem. (Realization of modal A-calculus). There is an effective step by step real-
ization r of any derivation £:T = t(Z): A in the A-term calculus for IS4 as a derivation of
Z:T" = t"(Z): A" in ICPN .

Proof. As above all the usual steps of A-terms formation can be emulated in the Logic of
Proofs (here in ZLPN'). The entire term assignment system for ZS4 is obtained from the usual
one for intuitionistic logic by adding two new rules that correspond to “modal” operations on
A-terms “box” and “unbox”:

A= s1:047 ... A= s,:04; fI?lilel,...,fI,‘kZDAk :>t(’f")B (DI)

A = box(t(3)): OB

and
I'= t:04

(OE).
I' = unbox(t): A

Let p: ' = t: A be a modal A-term, and let D be a natural derivation of A from the
hypothesis I', which is represented by this A-term. The construction of the desired realization
r takes two rounds. First, we realize all the occurrences of O in the derivation D of B from
Ay, ..., A, by proof polynomials according to the algorithm from 3.3. As a result, we get
a realization * of modalities in D such that ZCPN F ¥* = F* holds for every intermediate
derivation > = F' in D. The second round produces the desired realization r and proceeds by
an induction on the steps of the A-term construction (i.e. on the construction of D). Without
loss of generality we assume, that the proof variables used in the first round for *x are all
different from the ones we use in the second round.

27

At the nodes of D corresponding to intuitionistic connectives use standard translations
from 6.5. At a (O7) node a natural deduction step is performed:

A= 0A4; ... A= 0OA4; OA4,...,04, = B
A = OB '

The corresponding step of the modal A-term assigning process is

)

u:A = 31(1_1:)15141 o A = Sk(T_L')ZDAk !IJlilel,...,.’I,'kZDAk = t()B
@: A = box(t)(3(a@)): 0B '

By the construction of x*
A= f1: A, .., A" = fri AL, v ALy AL = BY(Y)

for some proof polynomials fi,..., fx. Also by the construction of * from 3.3 we may assume,
that the variables y1, ..., yx do not occur in A7,..., A7. By 5.3, find a proof polynomial p()
such that

y1: A7, .., Ykt Ay = p(Y): B (Y).
By the substitution [gj’/f_j from the latter derivation we get
fleTa tety kaz = p(_.)B*(f)

And by the induction hypothesis,
w:A* = sh(ud): f1: A7, cee sy AT = sp(d): fr A

By 5.3, construct a proof polynomial g(#) such that

— —

wi:fri ALz fer Ay = g(%) :p(f) B (f),

by substitution,

— —

st fie AL, sk fi Ay = g(s7 (@) :p(f): B (),
and, by the transitivity of =,
i: A = g(s7 (@) :p(f): B*(f).
Let (box(t))" = g(s (i)).
At a (OE)-node of D we have a figure

u:I' = t(u):0A

@:I' = unbox(t)(u): A

28

which corresponds to a natural deduction step from I' = OA to I' = A. By the realization x
we have I'" = A*. Use the standard transformation (: E) from 6.5 to construct h(Z) and a
pure proof

w:T" = h(a): A*.
Put (unbox(t))" = h.
<«

7 Standard provability interpretation of £P and Z(LP

The Logic of Proofs is meant to play for a notion of proof a role similar to that played by the
boolean propositional logic for the notion of statement. In principle £P models any system
of proofs with a proof checker operation capable of internalizing its own proofs as terms (cf.
[22]). In particular, any proof system for the first order Peano Arithmetic PA (cf. [8], [9], [19],
[23]) provides a model for £LP with Godel numbers of proofs being a instrument of internalizing
proofs as terms. Although the soundness (=) does not necessarily refer to the arithmetical
models of LP, PA is convenient for establishing the completeness (<) of LP. Given LP I/ F'
one can always find a proof system for PA along with an evaluation of variables in F' which
makes F false (cf. [5]).

Under A; and ¥; we mean the corresponding classes of arithmetical predicates. We will
use @, to denote arithmetical formulas, f,g,h to denote arithmetical terms, i, 7, k,[,n to
denote natural numbers unless stated otherwise. We will use the letters w,v,w,x,y,z to
denote individual variables in arithmetic and hope that a reader is able to distinguish them
from the proof variables. If n is a natural number, then 7 will denote a numeral corresponding
to m, i.e. a standard arithmetical term 0" where ’ is a successor functional symbol and the
number of "’s equals n. We will use the simplified notation n for a numeral 7 when it is safe.

7.1 Definition. @ We assume that PA contains terms for all primitive recursive functions
(cf. [23]), called primitive recursive terms. Formulas of the form f(Z) = 0 where f(Z) is a
primitive recursive term are standard primitive recursive formulas. A standard X1 formula is
a formula Jzp(z,§) where ¢(z,7) is a standard primitive recursive formula. An arithmetical
formula ¢ is provably >, if it is provably equivalent in PA to a standard >; formula; ¢ is
provably Ay iff both ¢ and —¢ are provably ;.

7.2 Definition. A proof predicate is a provably Aj-formula Prf(z,y) such that for every
arithmetical sentence ¢

PAF ¢ < forsomen€w Prf(n,"¢") holds!.

"We have omitted bars over numerals for natural numbers n, "¢ in the formula Prf.

29

A proof predicate Prf(z,y) is normal if the following conditions are fulfilled:

1) (finiteness of proofs) For every proof k the set T'(k) = {l | Prf(k,l)} is finite. The
function from k to the canonical number of T'(k) is computable. In particular, this property
indicates that the set of theorems proven by k is finite for every k.

2) (conjoinability of proofs) For any natural numbers k and [there is a natural number n
such that
Tk)yuT() CT(n).

7.3 Comment. Every non-deterministic normal proof predicate can be made deterministic
by changing from
”

“p proves Fy,..., F,” to “(p,i) proves Fj, 1 =1,...n".

Moreover, every deterministic proof predicate may be regarded as non-deterministic by reading

b

“p proves FiA ... AF,” as “p proves each of F;, i1 =1,...n".

7.4 Lemma. For every normal proof predicate Prf there are computable functions m(z,y),
a(z,y), c(x) such that for all arithmetical formulas p,v and all natural numbers k,n the
following formulas are valid:

Prf(k,"p—47) A Prf(n,"¢") = Prf(m(k,n), ")
Prf(k,"¢") = Prf(a(k,n),"¢"), Prf(n,"p")—= Prf(a(k,n), ¢")
Prf(k,"@™) = Prf(c(k),” Prf(k,"™)7).

Proof. The following function can be taken as m:

Given k,n put m(k,n) = puz“Prf(z,"¢") for all ¢ such that there are "p—1p €
T(k) and "p? € T(n)” .

Likewise, for a one could take
Given k,n put a(k,n) = pz “I'(k)UT(n) CT(z)".

Finally, ¢ may be put

30

Given k put c(k) = puz“Prf(z," Prf (k,"p™)™) for all "¢ € T(k)”. Such z always
exists. Indeed, Prf(k,"7) are true Ay formulas for every "o € T(k), therefore
they all are provable in PA. Use conjoinability to find a uniform proof of all of
them.

Note, that the natural arithmetical proof predicate PROOF (z,y)
“r is the code of a derivation containing a formula with the code y”.
is an example of a normal proof predicate.

7.5 Definition. An arithmetical interpretation * of the LP-language has the following
parameters:

e a normal proof predicate Prf with the functions m(z,y), a(x,y), ¢(z) as in Lemma 7.4
e an evaluation of propositional letters by sentences of arithmetic, and

e an evaluation of proof letters and proof constants by natural numbers.
Let * commute with boolean connectives,
(b-5)" = m(t',s), (t+s)" =a(t',s"), (1) = c(t).

(t:F)* = Prf(t*,"F*7).

Under an interpretation * a proof polynomial £ becomes a natural number ¢*, an LP-formula
F becomes an arithmetical sentence F*. A formula (¢:F)* is always provably A;. Note,
that PA (as well as any theory containing certain finite number of arithmetical axioms, e.g.
Robinson’s arithmetic) is able to derive any true A; formula, and thus to derive a negation
of any false Ay formula (cf. [19]). For a set X of LP-formulas under X* we mean the set of
all F*’s such that F' € X. Given a constant specification CS, an arithmetical interpretation x
is a CS-interpretation if all formulas from CS* are true (equivalently, are provable in PA). An
LP-formula F' is valid (with respect to the arithmetical semantics) if the arithmetical formula
F* is true under all interpretations x. F'is CS-valid if F™* is true under all CS-interpretations
*.

7.6 Proposition. (Arithmetical soundness of LP)

1. If LP = F with o constant specification CS, then F is CS-valid.
2. If LP = F with a constant specification CS, then PAF F* for any CS-interpretation x.

31

Proof. A straightforward induction on the derivation in £P;. Let us check 2. for the axiom
t: F — F. Under an interpretation x ({:F — F)* = Prf(¢t*,"F*7) — F*. Consider two
possibilities. Either Prf(t*,"F*™") is true, in which case t* is indeed a proof of F* thus
PAE F* and PAF (t: F — F)*. Otherwise Prf(t*,” F*7) is false, in which case being a false
A, formula it is refutable in PA, i.e. PAF =Prf(t*,"F*7) and again PAF (t: F — F)*.

<

In fact LP also enjoys the following completeness property.

7.7 Proposition. ([3], [5])

1. LP + F with a constant specification CS iff F is CS-valid.
2. LP + F with a constant specification CS iff PAF F* for any CS-interpretation .

Definition similar to 7.5 provides an arithmetical model for ZLP in Heyting Arithmetic

HA.

7.8 Theorem. (Arithmetical soundness of ZLP)
If ILP & F with a constant specification CS, then HA = F* for any CS-interpretation x.

8 Discussion

There are several reasons why we chose the combinatory logic format for LP versus an es-
sentially equivalent pure A-style presentation of LP without proof constants but with extra
operations on terms. The current combinatory style axiomatization of £LP and ZLP (definition
2.2) is more compact than a possible pure A-style axiomatization. In addition, the former oc-
cupies a position in between its two major applications: the language of modal logic and the
language of A-calculi.

The Logic of Proofs has a solid provability semantics and a more expressive language than
either modal logic or the A-calculus. Modal logic and traditional A-calculi cover only fractions
of ZLP but instead enjoy nice symmetries, transparent models, normal forms, etc. In their
own narrow areas modal and A presentations of the same facts are usually shorter than the
corresponding presentations via proof polynomials. Thus &4 and A-calculi may be regarded
as higher level languages for corresponding fragments of LP.

Proof polynomials reveal the dynamic character of modality. The realization of $4 in LP
provides a fresh look at modal logic and its applications in general. Such areas as modal
A-calculi, polymorphic second order A-calculi, A-calculi with types depending on terms, non-
deterministic A-calculi, etc., could gain from their semantics as proof polynomials delivered

by LP.

32

9 Acknowledgements

This work has benefited from many interactions over the past several years with a number
of mathematicians, logicians and computer scientists: H. Barendregt, L. Beklemishev, J. van
Benthem, R. Constable, J.M. Dunn, V. Krupski, G. Mints, A. Nerode, E. Nogina, V. Pratt,
J. Remmel, A. Scedrov, R. Shore, T. Sidon.

I am indebted to Lena Nogina, Volodya Krupski, Tanya Sidon and Fred Smith for a reading
of this paper which led to valuable improvements.

The research described in this paper was supported in part by the Russian Foundation
for Basic Research, grant 96-01-01395 and by ARO under the MURI program “Integrated
Approach to Intelligent Systems”, grant DA AHO04-96-1-0341.

References

[1] S. Artemov and T. Strassen, “Functionality in the Basic Logic of Proofs”, Tech.Rep. IAM
92-004, Department for Computer Science, University of Bern, Switzerland, 1993.

[2] S. Artemov, “Logic of Proofs”, Annals of Pure and Applied Logic, v. 67 (1994), pp. 29-59.

[3] S. Artemov, “Operational Modal Logic,” Tech. Rep. MSI 95-29, Cornell University, De-
cember 1995.

[4] S. Artemov, “Proof realizations of typed A-calculi,” Tech. Rep. MSI 97-2, Cornell Univer-
sity, May 1997.

[5] S. Artemov, “Logic of Proofs: a Unified Semantics for Modality and A-terms,” Tech. Rep.
CFIS 98-06, Cornell University, March 1998.

[6] J. van Benthem. “Reflections on epistemic logic”, Logique & Analyse, 133-134, pp. 5-14,
1991

[7] G. Bierman and V. de Paiva, “Intuitionistic necessity revisited”, Proceedings of the
Logic at Work Conference, Amsterdam (December 1992), Second revision, June 1996
(http://theory.doc.ic.ac.uk/tfm/papers.html).

[8] G. Boolos, The Unprovability of Consistency: An Essay in Modal Logic, Cambridge Uni-
versity Press, 1979

[9] G. Boolos, The Logic of Provability, Cambridge University Press, 1993

[10] V. A. J.Borghuis, Coming to Terms with Modal Logic: On the interpretation of modalities
in typed A-calculus, Ph.D. Thesis, Technische Universiteit Eindhoven, 1994

33

[11] D. van Dalen, Logic and Structure, Springer-Verlag, 1994.
[12] D. M. Gabbay, Labelled Deductive Systems, Oxford University Press, 1994.
[13] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge University Press, 1989.

[14] K. Godel, “Vortrag bei Zilsel” (1938), in S. Feferman, ed. Kurt Gadel Collected Works.
Volume III, Oxford University Press, 1995

[15] V.N. Krupski, “Operational Logic of Proofs with Functionality Condition on Proof Pred-
icate”, Lecture Notes in Computer Science, v. 1234, Logical Foundations of Computer
Science’ 97, Yaroslavl’, pp. 167-177, 1997

[16] S. Martini and A. Masini,“A computational interpretation of modal proofs”, in Wansing,
ed., Proof Theory of Modal Logics, (Workshop proceedings), Kluwer, 1994.

[17] P. Martin-Lof. “Constructive mathematics and computer programming”, in Logic,
Methodology and Philosophy of Science VI, North-Holland, pp. 153-175, 1982.

[18] P. Martin-Lof. Intuitionistic Type Theory, Studies in Proof Theory, Bibliopolis, Naples,
1984.

[19] E. Mendelson, Introduction to mathematical logic. Third edition., Wadsworth, 1987

[20] C. Parsons and W. Sieg. “Introductory note to *1938a”. In: S. Feferman, ed. Kurt Gddel
Collected Works. Volume III, Oxford University Press, pp. 62-85, 1995.

[21] F. Pfenning and H.C. Wong, “On a modal lambda-calculus for S4”, FElectronic Notes in
Computer Science 1, 1995.

[22] R. Smullyan, Diagonalization and Self-Reference, Oxford University Press, 1994
[23] G. Takeuti, Proof Theory, North-Holland, 1975

[24] A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press,
1996.

34

