
Proof Realization of Intuitionistic and Modal Logics

Sergei N. Artemov

�

Technical Report MSI 96-06, Cornell University, 1996

Abstract

Logic of Proofs (LP) has been introduced in [2] as a collection of all valid formulas in

the propositional language with labeled logical connectives [[t]](�) where t is a proof term

with the intended reading of [[t]]F as \t is a proof of F". LP is supplied with a natural axiom

system, completeness and decidability theorems. LP may express some constructions of

logic which have been formulated or/and interpreted in an informal metalanguage involv-

ing the notion of proof, e.g. the intuitionistic logic and its Brauwer-Heyting-Kolmogorov

semantics, classical modal logic S4, etc (cf. [2]). In the current paper we demonstrate

how the intuitionistic propositional logic Int can be directily realized into the Logic of

Proofs. It is shown, that the proof realizability gives a fair semantics for Int.

1 Introduction

Logic of Proofs (LP) incorporates proof terms directly into the propositional language using

new atomic formulas [[t]]F with the intended reading \t is a proof of F" (cf. [2]). A func-

tional completeness theorem from [2] (cf. Section 5 below) demonstrates, that three basic

operations on proofs: application, proof checker, and choice constitute a basis for all oper-

ations on proofs, expressible in the propositional language with the labeled connectives of

the type [[term]](formula). These three operations are explicitely incorporated into LP . The

language of LP has an exact intended semantics, where \t is a proof of F" is interpreted as a

corresponding arithmetical formula about the codes of t and F . The decidability of LP was

established in ([2]), along with the completeness of a natural axiom system for LP.

The intuitionistic logic Int was supplied ([7], [8], cf.[11], [5], [12]) with an informal

Brouwer-Heyting-Kolmogorov (BHK) operational semantics , which was given in terms of

logical conditions on the formulas and their proofs, e.g. the \implication" clause is \p proves

A! B i� p is a construction transforming any proof c of A into a proof p(c) of B". In 1933

G�odel made a step to formalize BHK semantics by introducing a faithfull embedding of Int

�

Department of Mathematics, Cornell University , Ithaca NY, 14853 email:sergei@artemov.mian.su;

Steklov Mathematical Institute, Russian Academy of Sciences, 42 Vavilova str., Moscow 117966, Russia

1

into a \natural born" provability logic S4; this attempt has remained incomplete, since, in

turn, S4 has lacked the intended provability semantics.

Int ,! S4 ,! ?

As it was also established in [2], an immediate forgetful translation of LP gives exactly

S4; in particular, there is a realization algorithm recovering LP-terms in any S4-proof. So,

LP provides an intended provability interpretation for the modal logic S4

S4 ,! LP ,! Arithmetic;

thus completing the G�odels embedding of Int into S4 to the fair arithmetical provability

semantics for both Int and S4

Int ,! S4 ,! LP ,! Arithmetic:

In the current paper we give a direct realization algorithm of Int into LP, G�odel style.

This proof realizability provides a fair semantics for Int:

Int ` F , F is proof realizable:

2 Logic of Proofs

The language of LP contains

boolean constants >;?, sentence variables p

0

; : : : ; p

n

; : : :

proof variables x

0

; : : : ; x

n

; : : :

proof axiom constants a

0

; : : : ; a

n

; : : :

boolean connectives !; : : :

functional symbols: monadic !, binary + and �

operator symbol [[term]] (formula).

Terms and formulas are de�ned in a natural way: a proof variable and an axiom constant

is a term; a sentence variable and a boolean constant is a formula; whenever s; t are terms

!t; (s+ t); (s� t) are again terms, boolean connectives behave conventionally, and for t a term

and F a formula [[t]]F is a formula. A term is ground if is does not contain variables.

We will write s �t or even st instead of (s � t) and skip parentheses when convenient. If

~x = (x

1

; : : : ; x

n

) and � = (A

1

; : : : ; A

n

), then we will write [[~x]]� for [[x

1

]]A

1

; : : : ; [[x

n

]]A

n

.

2.1 De�nition. System LP

AS

. The axioms are all formulas of the form

Ac. Axiom schemes of classical propositional logic in the language of LP

A1. [[t]]F ! F \re
exivity"

A2. [[t]](F ! G) ! ([[s]]F ! [[ts]]G) \application"

A3. [[t]]F ! [[!t]][[t]]F \proof checker"

A4. [[s]]F ! [[s+t]]F , [[t]]F ! [[s+t]]F \choice"

2

AS. A �nite set of formulas of the form [[c]]A,

where c is an axiom constant, and A is an axiom Ac-A4 \axiom speci�cation"

Rule: modus ponens.

System LP is the union of LP

AS

's for all axiom speci�cations AS.

The intended understanding of LP is as a logic of operations on proofs, where [[t]]F stands

for

\t is a code for a proof of F":

For the usual G�odel proof predicate Proof (x; y) in PA there are primitive recursive functions

from codes of proofs to codes of proofs corresponding to \�" and \!": \�" stands for a

operation on proof sequences which realizes the modus ponens rule in arithmetic, and \!"

is a \proof checker" operation, appearing in the proof of the second G�odel Incompleteness

theorem. The usual proof predicate has a natural nondeterministic version PROOF(x; y)

called standard nondeterministic proof predicate

\x is a code of a derivation containing a formula with a code y".

PROOF already has all three operations of the LP-language: the operation s+ t is now just

a concatenation of (nondeterministic) proofs s and t.

2.2 Comment. System LP is not a multimodal logic, since no single modality [[t]](�)

satis�es the property [[t]](p ! q) ! ([[t]]p ! [[t]]q) in LP . This makes LP di�erent from

numerous multimodal logics. However, the entire variety of labeled modalities in LP can

emulate S4([2], cf. Theorem 3.4).

2.3 Comment. The usual deduction theorem holds for LP :

�; A `

LP

B) � `

LP

A! B:

2.4 Lemma. (Substitution lemma for LP). If �(x; p) `

LP

B(x; p) for a propositional

varaiable p and a proof variable x, then for any proof term t and any formula F

�(x=t; p=F) `

LP

B(x=t; p=F):

Proof is trivial, since all axioms and rules of LP remain axioms and rules after a substitution.

2.5 Lemma. The following rules are admissible in LP. Here A,B are LP-formulas, �;�

are �nite sets of LP-formulas, y is a proof variable, t; r are proof terms, ~y and ~s are vectors

of proof variables and proof terms correspondingly, \ `" means \ `

LP

".

3

Dynamic Necessitation:

` B

` [[t]]B for some ground t;

Lifting:

[[~s]]�;� ` B

[[~s]]�; [[~y]]� ` [[t(~y)]]B for some t(~y);

Lowering:

�; [[~y]]� ` [[t]]B

;

�;� ` B

(~y does not occur in the conclusion)

Abstraction:

[[~s]]�; [[y]]A ` [[t(y)]]B

[[~s]]� ` [[�y:t(y)]](A! B)

for some proof term denoted as �y:t(y)

(y does not occur in the conclusion.)

Proof. Dynamic Necessitation is a special case of Lifting.

Lifting. By induction on a proof of B from the premises [[~s]]�;�. If B 2 [[~s]]�, then

[[~s]]�; [[~y]]� ` [[!s

i

]]B for some s

i

2 ~s. If B 2 �, then [[y

j

]]B 2 [[~y]]�. for some y

j

2 ~y. If B is

an axiom Ac { A4, then [[c]]B is an axiom AS. If B is from A5, i.e. B is [[c]]A for some A from

Ac { A4, then by A3, ` [[c]]A! [[!c]][[c]]A, and [[~s]]�; [[~y]]� ` [[!c]]B. Let B be obtained from

C,C!B by modus ponens. Then, by the induction hypothesis, [[~s]]�; [[~y]]� ` [[t

1

(~y)]](C!B)

and [[~s]]�; [[~y]]� ` [[t

2

(~y)]]C. for some terms t

1

and t

2

. By A2, [[~x]]�; [[~y]]� ` [[t

1

�t

2

]]B

Lowering. By the arithmetical completeness theorem for LP ([2] or Theorem 4.1 of the

current paper), it su�ces to show that for any arithmetical interpretation � if j= �

�

and

j= �

�

, then j= B

�

. Suppose j= �

�

and j= �

�

; without loss of generality we assume that for

each A

j

2 � the arithmetical formula A

�

j

is provably �

1

, any such A

�

j

is provable in Peano

Arithmetic PA, and j= Prf (k

j

; pA

�

j

q) for some natural number k

j

. Since ~y does not occur in

�;�; B we may restrict ourselves to the Axiom Speci�cations which do not contain ~y either.

Indeed, if there were a proof �;� ` B from the Axiom Speci�cation set AS containing ~y, then

after the substitution [y

j

=c] for any proof constant c we would get a ~y-free proof �;� ` B.

We de�ne a new arithmetical interpretation �

1

upgrading � by the evaluation y

�

1

j

:= k

j

.

Now �

�

coincides with �

�

1

, and thus j= �

�

1

. By the de�nition of �

1

, j= ([[~y]]�)

�

1

. By the

arithmetical correctness of LP , from the premise �; [[~y]]� ` [[t]]B we conclude j= ([[t]]B)

�

1

,

and thus j= B

�

1

. Again, we notice that B

�

1

coincides with B

�

, and get the desired B

�

.

Abstraction. From [[~s]]�; [[y]]A ` [[t(y)]]B by Lowering, get [[~s]]�; A ` B, then by Deduction,

[[~s]]� ` A!B, and then use Lifting to get [[~s]]� ` [[r]](A!B) for some proof term r.

J

4

2.6 Comment. A term t(~y) introduced by the Lifting rule is nothing but a protocol of a

proof of B from [[~s]]�; [[~y]]�. The same holds for the rule of Abstraction, where �y:t(y) is a

protocol of a proof of A!B from [[~s]]�.

The Lowering rule is the only rule in this list which does not introduce a proof term. Also,

the proof of this rule does not look constructive. However, since LP is decidable there is a

(primitive recursive) procedure, which constructs a proof from the conclusion given a proof

from the premise. A more direct algorithm could perhaps be found after developing some

basic proof theory for LP .

The Abstraction rule might not look like an operation on terms either, because in the

the process of constructing �y:t(y) from t(y) we get rid of the latter and seemingly construct

�y:t(y) from the scratch. However, it is not the case. A term t(y) is a protocol of a proof

of B from [[~s]]�; [[y]]A. From this proof we get a proof [[~s]]�; A ` B, then a proof of A!B

from [[~s]]�. Finally, �y:t(y) is a protocol of the latter proof. All the procedures from this

chain of transformations leading from t(y) to �y:t(y) are constructive; not all of them can be

formalized in LP , but it is a small prise we pay for our intension to keep the basic language

for the Logic of Proofs as simple a possible.

3 Realization of S4 in LP.

3.1 Example. S4 ` (2A^2B)! 2(A^B). In LP this can be reproduced by the following:

1. A;B ` A^B

2. [[x]]A; [[y]]B ` [[t(x;y)]](A^B), from 1. by Lifting

3. [[x]]A ^ [[y]]B ` [[t(x;y)]](A^B)

4. ` ([[x]]A ^ [[y]]B)! [[t(x;y)]](A^B)

In fact, here t(x;y) can be taken (cx)y, where [[c]](A!(B!(A^B))) is an axiom AS.

3.2 Example. S4 ` (2A_2B)! 2(A_B). In LP the corresponding derivation is

1. A ` A_B

2. B ` A_B

3. [[x]]A ` [[t(x)]](A_B) by Lifting from 1

4. [[y]]B ` [[s(y)]](A_B) by Lifting from 2

5. [[x]]A ` [[t(x)+s(y)]](A_B), [[y]]B ` [[t(x)+s(y)]](A_B) by A4 from 3, 4.

6. [[x]]A _ [[y]]B ` [[t(x)+s(y)]](A_B)

7. ` [[x]]A _ [[y]]B)! [[t(x)+s(y)]](A_B)

The fundamental fact about S4 is that, all S4-theorems have a corresponding operational

reading in LP .

5

3.3 De�nition. By an LP-realization r = r(AS) of a modal formula F we mean

1. an assignment of LP-terms to all occurrences of the modality in F ,

2. a choice of an axiom speci�cation AS;

Under F

r

we denote the image of F under a realization r. Positive and negative occurrences

of modality in a formula and a sequent are de�ned in the usual way. A realization r is normal

if all negative occurrences of 2 are realized by proof variables.

3.4 Theorem. ([2]) If S4 ` F , then LP

AS

` F

r

for some axiom speci�cation AS and some

normal realization r = r(AS).

The proof describes an algorithm which for a given cut-free derivation T in S4 assigns LP

terms to all occurrences of the modality in T .

3.5 Corollary.

S4 ` F , LP ` F

r

for some realization r:

4 Arithmetical Semantics

Let us agree to use a new functional symbol �z'(z) for any arithmetical formula '(z) and

assume that �-terms could be eliminated in the usual way by using the small scope convention

(cf. [4]). An arithmetical formula ' is provably �

1

i� both ' and :' are provably �

1

.

A term �z' is provably recursive i� ' is provably �

1

. Closed recursive term is a provably

total and provably recursive term �z' such that ' contains no free variables other than z.

Close recursive terms represent all provably recursive names for natural numbers. We have

to use all of them as proof realizers, since some operations on proofs, e.g. the proof checker

\!", depend on the name of the argument, not on its value. Indeed, if PROOF(n; k) holds,

then PROOF(n+ 0; k) also holds, !(n) is a proof of PROOF(n; k) and !(n + 0) is a proof

of PROOF(n + 0; k). However, !(n) and !(n + 0) deliver proofs of di�erent formulas, thus,

generally speaking, !(n) 6=!(n+ 0).

A proof predicate is a provably �

1

-formula Prf (x; y) such that for all '

PA ` ' , for some n 2 ! Prf (n; p'q) holds:

A proof predicate Prf(x,y) is normal if

1) for every proof k the set T (k) = fl j Prf (k; l)g is �nite and the function

]

T (k) = the code of T (k)

is provably recursive,

2) for every �nite set S of theorems of PA, S � T (k) for some proof k.

6

The nondeterministic proof predicate PROOF (above) is a normal proof predicate.

For every normal proof predicate Prf there are provably recursive terms m(x; y), a(x; y),

c(x) such that for all closed recursive terms s; t and for all arithmetical formulas '; the

following formulas are valid:

Prf (s; p'! q) ^ Prf (t; p'q)!Prf (m(s; t); p q)

Prf (s; p'q)!Prf (a(s; t); p'q); Prf (t; p'q)!Prf (a(s; t); p'q)

Prf (t; p'q)!Prf (c(ptq); pPrf (t; p'q)q).

Let AS be an axiom speci�cation. An arithmetical AS-interpretation � of LP-language

has the following parameters: AS, a normal proof predicate Prf, an evaluation of sentence

letters by sentences of arithmetic, an evaluation of proof letters and axiom constants by closed

recursive terms. We put >

�

� (0 = 0) and ?

�

� (0 = 1), � commute with boolean connectives,

(t�s)

�

� m(t

�

; s

�

); (t + s)

�

� a(t

�

; s

�

); (!t)

�

� c(pt

�

q), ([[t]]F)

�

� Prf (t

�

; pF

�

q). We also

assume, that PA ` G

�

for all G 2 AS.

Under any AS-interpretation � an LP-term t becomes a closed recursive term t

�

(i.e. a

recursive name of a natural number), and an LP-formula F becomes an arithmetical sentence

F

�

. In what follows "arithmetically AS-valid" means either "provable in PA" or "true in the

standard modal" under any AS-interpretation.

Note that the re
exivity principle is back, since [[t]]F ! F is provable in PA under any

interpretation �. Indeed, let n be the value of t

�

. If Prf (n; pF

�

q) is true, then PA ` F

�

,

thus PA ` Prf (n; pF

�

q)!F

�

. If Prf (n; pF

�

q) is false, then PA ` :Prf (n; pF

�

q), and again

PA ` Prf (n; pF

�

q)!F

�

.

4.1 Theorem. ([2], Arithmetical completeness of LP)

LP

AS

` F , F

�

is arithmetically AS-valid .

Combining 3.4 and 4.1, we obtain the arithmetical completeness of S4:

S4 ` F , F

r

is arithmetically AS-valid for some

realization r and some axiom speci�cation AS.

G�odel in [6] de�ned a translation tr of intuitionistic formulas, into S4-formulas where tr(F)

is obtained from F by boxing all atoms and all implications in F . This G�odel translation is

shown ([6], [9]) to provide a faithful embedding of Int into S4. The proof interpretation of

LP-terms above provides a faithful proof arithmetical realization of Int:

Int ` F , [tr(F)]

r

is arithmetically AS-valid for some

normal realization r and some axiom speci�cation AS.

7

5 Functional completeness

It is proven in [2] that LP describes all possible propositional operations on proofs. The

basic operations �; !;+ thus play for proofs a role similar to that boolean connectives play for

classical logic.

Consider an arbitrary scheme of a speci�cation of an operation of proofs in arithmetic.

Such a speci�cation is an arithmetical formula

8~x 2 C 9y \y is a proof of G(~x)";

or, equivalently

8~x(C(~x) ! 9y \y is a proof of G(~x)");

true in the standard model of arithmetic, where C and G are arbitrary arithmetical conditions.

Now we restrict C and G by an LP-language without functions, which will play a role of

a speci�cation language. The only proof terms in the speci�cation language are the proof

variables. Now it is a reasonable question to ask

what operations on proofs can be speci�ed in the logic of proofs?

Now we can make C(~x) and G(~x) conditions in the speci�cation language. Also, we express the

existential quanti�er 9y \y is a proof of G(~x)" by the usual provability modality 2, extending

the de�nition of F

�

by one more item : (2F)

�

is Pr(pF

�

q).

Finally we restrict C to a \proof positive" condition, i.e. one where the outermost q-atomic

subformulas are positive in C.

5.1 Comment. Indeed, a condition of the sort

:[[x]] P ! 2:[[x]]P;

although valid for any proof predicate, may hardly be accepted as a speci�cation of an op-

eration on proofs equally as good as �; !;+, because it derives conclusions from negative

information about proofs; here, from \x IS NOT a proof". The presentation of the negative

information in the logic of proofs remains a challenging open problem.

It seems that now we have found a balanced de�nition of an operation on proofs. The

regular case

[[x

1

]]C

1

^ : : :^ [[x

n

]]C

n

! 2G;

which comes from the straightforward formalization of the notion of an admissible inference

rule

C

1

; : : : ; C

n

G

is covered. Further shrinking of C to say conjunctions of q-atomic formulas would eliminate

natural and useful nondeterministic proof systems.

8

5.2 De�nition. We may de�ne now an abstract propositional operation on proofs as a

formula C ! 2G, valid under all arithmetical interpretations, where C;G are formulas in

the speci�cation language and C is proof positive.

5.3 Comment. Operations �; !;+ can be identi�ed as abstract propositional operations on

proofs. Indeed, formulas

[[x

1

]](F ! G)^ [[x

2

]] F ! 2 G

[[x]]F ! 2[[x]] F

[[x

1

]]F _ [[x

2

]]F ! 2F

are valid under every arithmetical translation and Skolem functions for the existential quan-

ti�ers on proofs in 2's here can be realized by m(x

1

; x

2

); c(x); a(x

1

; x

2

) correspondingly.

The following theorem ([2]) demonstrates thatLP-terms su�ce to realize any propositional

operation on proofs.

5.4 Theorem. ([2]) For any abstract propositional operation on proofs C ! 2G there exists

an LP-term t such that

LP ` C ! [[t]]G:

6 Logic of Proofs vrs Provability Logic.

The Logic of Proofs gives a formalization of the arithmetical provability operator di�erent

from the one of the Provability Logic. In a certain sense, the Logic of Proofs introduces a new

propositional language which is taylored to get rid of the hidden quanti�ers on proofs. The

indended interpretation of a formula of the LP-language gives provably decidable arithmetical

sentence, provided the evaluations of the propositions are. As a result, there is do direct way

to interpret the Second G�odel Incompletness theorem into LP . The �xed point construction

which establishes the arithmetical completeness of LP([2]) is totally di�erent from the one

used by R. Solovay is his proof of the arithmetical completeness of the provability logic (cf. [3]).

However, the arithmetical interpretations of the Logic of Proofs and the Provability Logic are

clearly compatible; in [1] in the proof of the arithmetical completenes of the system B it was

shown how to build the arithmetical �xed point for the Logic of Proofs (without operations)

in the top of the Solovay �xed point. The �xed point construction from [2] is a dynamic

version of the one from [1]. This gives a pretty clear idea how to prove the arithmetical

completeness of the logic in the language containing both the provability operator 2, and the

proof operators [[t]]'s with the operations on the proof terms. However, there is a creative

portion of work to be done here: one has to �nd a decent set of new operation on proofs

which handle the modality 2 properly.

9

7 Logic of Proofs vrs Modal Logic.

By 3.4, LP is a version of S4 presented in a more rich operational language, with no informa-

tion being lost, since S4 is the the exact term-forgetting projection of LP . An easy inspection

of the realizing algorithm shows that

LP-fomula = S4-formula + its S4-proof:

A transliretating of an S4-theorem into LP-language may result in an exponential growth of

its length. However, this increase looks much less dramatic if we calculate the complexity of

the input S4-theorem F in an \honest" way as the length of a proof of F in S4: the proof

terms appearing in the realization algorithm have a size linear of the length of the proof, so,

the total length of an LP-realization of an S4-formula F is bounded by the quadratic function

of the length of a given S4-proof of F .

The decomposition of the S4-modality into a �nitely generated set of terms in LP above

is a general fact, which may be used in other applications of the modal logic.

8 Logic of Proofs vrs Intuitionistic logic.

Kleene realizability (cf. [11]) of the intuitionistic language does not use the logical provability

constraints from the original BHK formulation and referes to all recursive functions, not just

operations on proofs. As a result, too many formulas become realizable, more than Int can

derive:

Int (Kleene realizable formulas

1

:

Proof realizability of Int can be de�ned as a superposition of the realizations of S4 in LP

and LP in the arithmetic (above); Int turns out to be complete with respect to the proof

realizability

Int = proof realizable formulas:

In addition to the general algorithm of realization of S4 in LP (3.4), we describe now its

"light" version, which realizes Int in LP directly.

We assume, that Int is presented in the language with f^;_;!;?g and recall, that

the G�odel translation of an Int-formula F into a S4-formula tr(F) consists in pre�xing all

subformulas in F by 2 (we agree to skip 2 pre�xes of ?). Our realization algorithm extends

this G�odel translation to LP-formulas.

Step 1. Take a sequential cut-free derivation of F in Int with the axioms p) p, where p

is a propositional variable, and ?) . Replace every formula G in this derivation by its

G�odel translation tr(G). The resulting tree T is an "almost" S4-derivation of tr(F) with the

axioms of the form 2p) 2p with p a propositional letter. More precisely, every S4-sequent

in T is provable in S4; moreover, each step down in T can be regarded as a corresponding

1

Unless a metatheory is restricted, e.g. by HA like in the Troelstra - Plisko theorem [10].

10

standard combination of S4-rules, excluding Cut. All the following steps are an adoptation

of the general realizing algorithm of S4 into LP for T .

Occurrences of 2 in T are related if they occur in related formulas in premises and con-

clusions of nodes in T ; we extend this relationship by transitivity. All occurrences of 2 in T

are now naturally split into disjoint families of related ones. Since polarities of the 2's are

respected in T we may speak about negative and positive families of related 2's. Two families

are close if they contain 2's from an axiom 2p) 2p. We call a positive family essential if

it contains at least one 2 introduced by the () 2) rule. In the tree T , essential 2`s appear

only at the nodes, corresponding to the rules of introduction to the succedent. Since all 2's at

the axiom nodes of T correspond to the atomic formulas, there are no essential 2's at leaves

(axiom nodes). The basic observation here is that no negative family is close to an essential

positive family.

Step 2. Realize each negative family and each nonessential positive family by a fresh proof

variable, realize close families by the same proof variable.

Step 3. For every essential positive family f enumerate all the nodes where the principal 2

has been introduced, and let n

f

be the total number of such nodes for a family f . Realize all

2's in an essential positive family f by the term

(u

1

+: : :+u

n

f

);

where u

i

's are fresh proof variables, which we call provisional variables. The resulting tree is

called an evaluated tree.

Step 4. Perform the following leaves-root procedure of replacing provisional variables by proof

terms, which will result in the desired realization r. After this procedure passes a node and

perform corresponding changes of the labelling sequent �) �, we will have

� `

LP

�: (y)

The case of an axiom node 2p) 2p in T , is trivial, since the corresponding LP-realization

is [[x]]p) [[x]]p for some proof variable x.

At the nodes of the evaluated tree, corresponding to the introduction to the antecedent

rules, we don't perform any substitutions. It is an easy exercise in a propositional logic to

verify, that the property (y) is respected.

A ()!) node in the evaluated tree looks like

[[y]]A; [[~x]]�) [[s]]B

,

[[~x]]�) [[t

1

+: : :+u

i

+: : :+t

n

f

]][[y]]A! [[s]]B)

where u

i

is a provisional variable, corresponding to this particular node. By the induction

hypothesis,

[[y]]A; [[~x]]� `

LP

[[s]]B:

11

By the Deduction rule for LP ,

[[~x]]� `

LP

[[y]]A! [[s]]B;

and by Lifting, there exists a proof term t(~x) such that

[[~x]]� `

LP

[[t(~x)]]([[y]]A! [[s]]B):

Substitute everywhere in the tree t(~x) for u

i

. Since t(~x) does not contain provisional variables,

u

i

is no longer present in the evaluated tree. By the substitution lemma the property (y)

survives for all sequents in the tree. Clearly,

[[~x]]� `

LP

[[t

1

+: : :+t+: : :+t

n

f

]]([[y]]A! [[s]]B):

The remaining cases of () ^)-nodes and () _)-nodes are treated similarly. After the

process reaches the root, no provisional variables remain in the tree, the assignment of proof

terms to the 2's in the root sequent is the desired realization of this sequent in LP .

Since an Int-formula ' may be identi�ed with the sequent) ', we may de�ne a realizer

of ' as a ground proof term r realizing the sequent) '; the resulting evaluated tree will

then have the root) [[r]]

e

' for some LP-formula

e

'. This r is a protocol of the derivation of

)

e

'.

The completeness theorem for proof realizations

' is provable in Int , ' is proof realizable

follows now from the fairness of the embeddings

Int ,! S4 ,! LP ,! Arithmetic:

8.1 Example. The Int-derivation

A)A

A) A_B ?) ?

:(A_B); A) ?

:(A_B)) :A

B) B

B) A_B ?) ?

:(A_B); B) ?

:(A_B)) :B

:(A_B)) :A^:B

produces the following evaluated tree (we use t :F instead [[t]]F to simplify the picture):

x :A) x :A

x :A) u

1

+u

2

: (x :A_y :B) ?) ?

z ::u

1

+u

2

: (x :A_y :B); x :A) ?

z ::u

1

+u

2

: (x :A_y :B)) v ::x :A

y :B) y :B

y :B) u

1

+u

2

: (x :A_y :B) ?) ?

z ::u

1

+u

2

: (x :A_y :B); y :B) ?

z ::u

1

+u

2

: (x :A_y :B)) w ::y :B

z ::u

1

+u

2

: (x :A_y :B)) p : (v ::x :A^w ::y :B)

12

Here u

1

; u

2

; v; w; p are provisional proof variables corresponding to all four essential positive

families in the tree. According to the algorithm, all of provisional variables will be evaluated

by term appearing from the lifting lemma used at the corresponding nodes.

The variable u

1

should be speci�ed at the node labeled by the sequent

[[x]]A) [[u

1

+u

2

]]([[x]]A_[[y]]B):

For that we apply Lifting to

[[x]]A `

LP

[[x]]A_[[y]]B:

In this particular case it is easy to write down a term for u

1

explicitly. Let a be a proof

constant satisfying

`

LP

[[a]]([[x]]A! ([[x]]A_[[y]]B)):

Since also

[[x]]A `

LP

[[!x]][[x]]A;

we have

[[x]]A) [[a�!x]]([[x]]A_[[y]]B);

and u

1

should be evaluated by a�!x. Similarly, u

2

should be evaluated by b�!y, where b is a

proof constant speci�ed by the condition

`

LP

[[b]]([[y]]B ! ([[x]]A_[[y]]B)):

To �nd a term s(z) for v consider a node labeled by

[[z]]:[[a!x+b!y]]([[x]]A_[[y]]B)) [[v]]:[[x]]A:

From its preceeding sequent we have

[[z]]:[[a!x+b!y]]([[x]]A_[[y]]B); [[x]]A `

LP

?;

by Deduction, we get

[[z]]:[[a!x+b!y]]([[x]]A_[[y]]B) `

LP

:[[x]]A;

and by Lifting, we get s(z) such that

[[z]]:[[a!x+b!y]]([[x]]A_[[y]]B) `

LP

[[s(z)]]:[[x]]A:

Similarly, we evaluate w by term r(z) such that

[[z]]:[[a!x+b!y]]([[x]]A_[[y]]B) `

LP

[[r(z)]]:[[y]]B:

Finally, the provisional variable p is evaluated by a term t(z) such that

[[z]]:[[a!x+b!y]]([[x]]A_[[y]]B) `

LP

[[t(z)]]([[v]]:[[x]]A^[[w]]:[[y]]B):

13

9 Logic of Proofs vrs Typed Lambda Calculus.

The rule of the � abstraction can be realized as an admissible rule of inference in the Logic

of Proofs (lemma 2.5). This shows a way to realize the entire Typed �-calculus in LP by

emulating the formation rules for �-terms by the corresponding admissible rules in LP. This

realization gives a direct arithmetical provability semantics for the Typed �-calculus.

Acknowledgements.

The research was supported by ARO under the MURI program \Integrated Approach to

Intelligent Systems", grant number DAAH04-96-1-0341.

References

[1] S. Art�emov, \Logic of Proofs," Annals of Pure and Applied Logic, v. 67 (1994), pp. 29-59.

[2] S. Art�emov, \Operational Modal Logic," Tech. Rep. MSI 95-29, Cornell University, De-

cember 1995.

[3] G. Boolos, Logic of Provability., CUP, 1993.

[4] D. van Dalen, Logic and Structure, Springer-Verlag, 1994.

[5] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge University Press,

1989.

[6] K. G�odel, \Eine Interpretation des intuitionistischen Aussagenkalkuls", Ergebnisse Math.

Colloq., Bd. 4 (1933), S. 39-40.

[7] A. Heyting, \Die intuitionistische Grundlegung der Mathematik", Erkenntnis, Bd. 2

(1931), S. 106-115.

[8] A. Kolmogoro�, \Zur Deutung der intuitionistischen Logik,"Math. Ztschr., Bd. 35 (1932),

S.58-65.

[9] J.C.C. McKinsey and A. Tarski, \Some theorems about the sentential calculi of Lewis and

Heyting", Journ.Symb. Logic, v. 13 (1948), pp. 1-15.

[10] V.E. Plisko, \On arithmetic complexity of certain constructive logics", transl from Mat

Zametki,v. 52, pp. 701-709, 1992.

[11] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics. An Introduction, v. 1,

Amsterdam; North Holland, 1988.

[12] A.S. Troelstra and H. Schwiftenberg, Basic Proof Theory, Cambrudge University Press,

1996.

14

