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Abstract

This note is a preliminary discussion of logics and se-
mantics for the specification, development, and verifi-
cation of hybrid control systems, with special attention
to the central issues of continuity and stability.

1 Introduction

This is a preliminary discussion of logics and semantics
for the specification, development, and verification of
hybrid control systems. In general, hybrid systems are
interacting networks of continuous (usually nonlinear)
plants and discrete automata. The discrete automata
are control automata controlling actuators used to en-
force desired plant behavior.

In the simplest case, a hybrid system consists of a con-
tinuous plant interacting with a digital control automa-
ton. We assume that interactions between the plant
and the control automaton occur at discrete times, say
t, = nA. The plant is modelled by a system of au-
tonomous differential equations ¢ = f(z,c), where z
is trajectory on the plant state space X and ¢ € C
is a control parameter. Hybrid systems are dynamical
systems with mixed continuous and discrete states.

The fundamental problem of hybrid systems is to find
algorithms which, given continuous plant differential
equations and plant performance specifications which
may include logical constraints, extract and verify dig-
ital control programs that force the state trajectories
of the system to obey their performance specifications.

We have found the available logics and semantics inad-
equate to describe continuous dynamics, much less hy-
brid dynamics, because they do not deal with the conti-
nuity and stability issues central to continuous systems.

Kohn and Nerode ([10], [5], [6]) developed models and

algorithms for formulating and solving this extraction
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and verification problem in a wide variety of cases.
They reformulate the problem as a relaxed calculus of
variations optimization problem on a suitably defined
“carrier” manifold. The problem becomes one of find-
ing a finite state control policy which, deployed, will
force the system to come within a user defined e of
the mimimum of the total cost function for the relaxed
calculus of variations problem. The € represents a user
comprormise based on cost and feasibility.

2 Motivation for Topological Semantics I

In going from the approximate optimization problem to
a finite state control automaton executing the control
policy which ensures this approximate optimality, care-
ful algorithms allow one to compute how close each pa-
rameter or constant of the simulation model (manifold
description) has to be to its assumed value to assure ¢-
optimality. These are the “margins of error” in the nu-
merical descriptions of actuators, sensors, and physical
process which can be allowed and still guarantee mathe-
matically that if the model dynamics are correct, then
the policy is e-optimal. This is a backward-chaining
€ — —4& argument for the relaxed dynamic programming
problem on a manifold.

The delta’s specified then define open sets associated
with the atomic propositions that assert values for pa-
rameters and data. As long as one is in the open set
associated with each parameter and datum, the opti-
mality is guaranteed. We think of these as open sets
denoted by these atomic propositions which assert val-
ues of constants and parameters.

Suppose one has computed such open set denotations
for these atomic propositions. By ensuring that the val-
ues of constants and parameters are within the appro-
priate denoted open sets, we guarantee that the propo-
sition asserting that the total cost is the mimimum has
as its denotation an open set containing an open ball of
radius € around the minimum value. Such an open ball
is an open subset of the open set denoting the minimum
assertion, and there can be other such ¢ balls.



We wish to introduce a notion of topological validity
by extending the assignment of open sets from atomic
statements to all statements, with an interpretation
similar to that above. It is highly dependent on the par-
ticular extraction procedure, because the assignment
to atomic propositions is determined by computations
in the extraction procedure. The topologically valid
statements are those whose denotation is the whole
state space, so these will be “invariants” during the
operation of the hybrid system. As long as model pa-
rameters and constants are in the open sets denoted
by corresponding value assertions, topological validity
persists. As the system runs, if one observes exceptions
to a topologically valid assertion, the model has failed.
If we then wish to restore c-optimality, we need either
to enlarge €, to revise parameters and constants, or to
change the structural model of the continuous plant,
actuators, and sensors.

3 Motivation for Topological Semantics II

We take it as an engineering requirement, as in [9],
that we do not build a system unless arbitrarily close
continuous states fire the same digital input symbols.
This entails that the inverse image of each digital in-
put symbol under an analog to digital conversion is
an open set in the topology on the continuous state
space, and that only the finite subtopology generated
by those finitely many open sets which fire input let-
ters is used in the decision making of the digital control
program. This means that two states of the continu-
ous physical system are indistinguishable by the con-
trol program if they have all the same neighborhoods
in this finite topology. The Kohn-Nerode extraction
procedure does produce programs with this property.
They come equipped with a finite topology.

We want hybrid systems languages and language se-
mantics in which proving a digital control program
correct automatically proves that the control program
obeys this requirement. When we prove that a control
program makes the hybrid system satisfy its program
specification, we want this to entail that if any state ob-
served is replaced by any other state indistinguishable
from it according to its associated finite topology, the
specification is still satisfied by the hybrid system. We
also want hybrid system languages expressive enough
to deal with extracting such control programs. We
would like to develop languages and semantics useful
to a wide variety of researchers, developers and users.
But we begin more modestly, by discussing our own
home territory, the Kohn-Nerode hybrid systems archi-
tecture, where we have a quite concrete idea of what
we need.
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4 Current Language for Kohn-Nerode Hybrid
Systems Architecture

What language naturally describes the Kohn-Nerode
architecture for extracting digital control programs
programs from mathematical simulation models of the
sensors, physical system, and actuators?

First Layer

In the Kohn-Nerode architecture, the digital con-
trol programs themselves are expressed as declarative
input-output Horn clause programs based on a finite
number of relation and constant symbols. The inputs
are letters representing digitized states, the outputs are
letters representing digitized control orders for the ac-
tuators of the physical system. The program is an ex-
ectutable explicit description of a finite automaton, but
its state diagram, which may contain millions of states,
is never computed. Instead, the answer substitution
mechanism of Prolog is used to answer the question
“What control law do 1 use NOW ?” based on the Horn
clause program plus the input atomic statments which
have been fired by sensing the state of the controlled
physical system.

Meta Layer

The Kohn-Nerode architecture has an agent program
for each digital control program which observes the be-
havior of that program and of the physical system it
controls. If the agent program observes a deviation of
system performance from the system performance spec-
ification, usually expressed as a violation of a quanti-
tative or logical conservation law, the agent program
concludes that the model of the physical system, on
the basis of which the control program was extracted,
needs to be revised. It revises the model, extracts a
new digital control program, and then substitutes the
new program for the one in use. The Kohn-Nerode
agent solves a relaxed variational problem on a mani-
fold describing the revised model and approximates to
get a new digital control program. The agent runs on a
much slower time scale than the digital conrol program.

A Kohn-Nerode agent is a Horn clause program with
assert and retract predicates. A simulation model of
the physical system is a Horn clause subprogram of
the agent. To change this model when violations of
conservation laws are observed, one has to retract and
add clauses, which is why the agent program has to be
a meta-logic program. So a complete account of the
logic and semantics of hybrid systems has to include
metaprogramming semantics in order to permit this
kind of adaptation for unmodelled dynamics. We do
not discuss metaprogram semantics here, but the topo-
logical semantics described below can be extended to



metaprograms of agents by generalizing several known
ways ways of giving semantics to assert and retract.

Here we deal only with the semantics of the Horn clause
logic program used to control the physical system. In
accord with the discussion above we take it that each
input program clause is fired by an open set of points
in the state space of the continuous system. An input
program clause is an atomic statement. There may be
several fired by a single state. We regard each atomic
statement as denoting the open set of the state space
that fires it. We can give an open set denotation to ev-
ery statement in propositional logic, in particular to all
Horn clause propositional programs. Assume the logic
is based on “and”, “or”, “implies”, “not”. The deno-
tation of “A or B” is the union of the denotations of A
and B. The denotation of “A and B” is the intersec-
tion of the denotations of A and of B. The denotation
of “A implies B” is the interior of the union of the com-
plement of the denotation of A and the denotation of
. B. The denotation of the negation of A is the interior
of the complement of the denotation of A. This is the
Tarski topological semantics ([11]) for the Intuitionis-
tic propositional logic based on these connectives and
based on assigning open subsets of the state space to
atomic statements. Since there are only a finite num-
ber of input symbols for the automaton, there are only
finitely many atomic statements that can be fired, and
all denotations of all propositional logic statements are
contained in a finite subtopology of the state space of
the continuous system generated by the denotations of
atomic statements. A propositional statement seman-
tically valid in this model is one denoting the open set
which is the whole space, while a statement is a seman-
tic contradiction in this model if it denotes the empty
set.

Over such a finite model, how would one interpret a
several-input/single-output Horn clause program P as
a non-deterministic finite automaton? There is a tran-
sition from input atomic statements Ay, ..., A, to out-
put atomic statement B iff the Horn program P to-
gether with Ay, ..., A, semantically entails B in the fi-
nite topological model above. This is a decidable ques-
tion. Validity of statements in such a finite topological
model is decidable. To see this, write the inductive
definition of validity out in the form of forcing over the
finite partially ordered set of open sets of the topology.
Observe that due to the finiteness of the space, this can
be checked.

In Kohn-Nerode, A, ...., A, are the input atomic state-
ments fired by the current state being in the denoted
open sets, and B is the statement as to what con-
trol order should be sent to an actuator. In fact, the
Kohn-Nerode control programs are expressed in pred-
icate Horn logic and the agent programs are in meta
predicate Horn logic.
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As explained above, the Prolog input-output control
program can not deal with points in the state space
of the physical system directly. Rather it deals with
equivalence classes of points under indistinguishability
with respect to the finite topology generated by deno-
tations of input statements for the input-output Prolog
program. We may regard the Prolog control program
as a logic program with its intended domain a set of
names for the indistinguishability classes. These classes
alternately may be characterized as sets of the form: an
open set (of the finite topology) minus all smaller open
sets.

All Prolog predicates in the control program may as
well be taken as predicates about this finite domain
of indistinguishability classes. If we have a name for
each indistinuishability class, the extension of a topo-
logical valuation of atomic statements of predicate logic
to arbitrary statements is easy. Over a finite domain in
which everything has a name, existential quantifiers are
finite disjunctions of all instances and universal quan-
tifiers are finite conjunctions of all instances. So every
first order statement over the domain denotes an open
set, in particular Horn clause programs, which are sim-
ply conjunctions of Horn implications. So a topological
semantics for first order logic is then associated with a
finite state Prolog control program which has associ-
ated open set denotations for atomic statements. In
practice, these represent tolerances necessary so that
the extracted program is e-optimal.

When the domain is infinite, one has to use Tarski’s
general definition to extend a valuation of atomic state-
ments to all statements. The change is that universal
quantification denotes the interior of the intersection of
denotations of all instances. (This is obviously unnec-
essary for finite spaces since the finite intersection of
open sets is open.) Existential quantification denotes
the union of denotations of all instances.

Agent programs require this twist for their topologi-
cal semantics. Since they contain a simlation model of
the system, they have to have the actual state space
of the physical system as a domain, and the domain
here is many-sorted. The predicates on this domain
are open relations between points of that state space.
The models used above, consisting of finite subtopolo-
gies on the state space, are crude approximations to
the “full” model of the state space equipped with its
standard topology. When the topology on the state
space i1s compact Hausdorff, it can be represented as
the inverse limit of the finite subtopology models. The
whole subject of hybrid systems can be seen as the
interplay involved in this limit, between constinuous
state spaces and their finite approximations. Symbolic
dynamics works in much the same way, but has not
in the past emphasized input-output behavior or the
automata inherent in approximation.



What about formal reasoning about topological mod-
els? The axioms and rules of inference of Intuitionis-
tic logic are exactly those that preserve validity in all
Tarski topological models. So in reasoning about fi-
nite topology models or about the topological models
of the physical system state space, all valid Intuitionis-
tic axioms and rules of inference may be used. But one
has to be careful not to use the rest of classical logic if
topological validity is to be preserved.

5 Other Work in Progress

The modal logics of programs are attractive, but are
not able to deal with continuous or mixed dynamical
systems. We have been investigating the modalities
associated with hybrid and continuous systems.

In the second author’s dissertation [3], and in [1], sev-
eral new modal logics are developed and investigated.
The logics are polymodal extensions of the classical
modal propositional logic S4, obtained by adjoining
new modal operators [¢] whose topological semantics
are given by the inverse image of a total function on
the state space. Intuitionistic propositional logic can be
faithfully embedded in these new logics in a standard
way. In S4, the modalities 0 and < correspond topo-
logically to the interior and closure operators, respec-
tively, so in the new logics, the scheme [c]0A — O[c]A,
for all sentences A, expresses the continuity of the func-
tion interpretting the [c] modality. Being able to ex-
press continuity, and hence stability, in the language
is a distinct advantage over other logics and fomalisms
for hybrid systems.
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