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Abstract The first order theory of the Diagonalizable Algebra of Peano Arith-
metic (DA(PA)) represents a natural fragment of provability logic with proposi-
tional quantifiers. We prove that the first order theory of the O-generated subalgebra
of DA(PA) is decidable but not elementary recursive; the same theory, enriched by
a single free variable ranging over DA(PA), is already undecidable. This gives a
negative answer to the question of the decidability of provability logics for recur-
sive progressions of theories with quantifiers ranging over their ordinal notations.
We also show that the first order theory of the free diagonalizable algebra on n
independent generators is undecidable iff n Φ 0.

/ Introduction Gδdel was probably the first to consider the provability interpreta-
tion of modal logic: according to it the modality D is understood as the standard arith-
metical Σi-predicate Pr( ) expressing provability in Peano arithmetic PA (cf. [15]).
A complete axiomatization together with a decision procedure for the propositional
modal logic ofprovability was given in Solovay [21]. On the other hand, it was shown
in Artemov [2] and Vardanyan [23] that predicate provability logic has no r.e. axiom
systems.

One of the most interesting remaining problems in this area is that of axiom-
atizability and decidability of the Provability Logic with Propositional Quantifiers
(PLPQ). Informally speaking, PLPQ is the set of all formulas in a modal language with
quantifiers over propositions, which are true in the standard model of PA under the in-
terpretation of propositional variables as (the Gόdel numbers of) arbitrary arithmetic
sentences, and D as Pr( ). For example, PLPQ contains the "usual" Hilbert-Bernays
derivability conditions

V/7, q D(DQ> -> q) -* (Up -* Πq)), Wp Π(Πp -» D Dp),

formalized Lob's theorem

D Vp (Π(Πp -> p) -* Dp)
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and many other nontrivial principles:

V/?, q 3rΠ((Dp V Πq) <+ Dr) (Goldfarb's Principle),

3/7 Π((Pp v D-i/?) -* D±) (Rosser's Principle), etc.

There are some difficulties in providing arithmetical interpretations for formulas
in the language of PLPQ. For example, Vp(Πp -» p) cannot be naturally interpreted
as a single arithmetical sentence, and hence it is not clear what the expression

DV/?(D/? -> p)

could mean. The following algebraic construction, however, gives rise to a robust
and natural fragment of PLPQ.

A Diagonalizable Algebra (DA) is, by definition, a boolean algebra enriched by
a unary operator τ such that

τl = 1, τx A x(x -> y) < τy\ τx < xτx\ τ(τx -> x) < τx.

The main example of a DA is DA(PA), that is the Lindenbaum boolean algebra of
Peano Arithmetic, with the provability formulaPr( ) as the operator τ. The equational
theory of DA(PA) can be identified with the propositional provability logic GL (see
e.g. Boolos [6] and Smoryήski [20]). Solovay's Second Arithmetical Completeness
Theorem implies that the universal (and hence, the existential) theory of DA(PA) is
decidable.

The full first order theory of DA(PA) represents a fragment of PLPQ, where all
propositions occur inside the scopes of D's, whereas any quantifiers may only occur
outside. The question whether the first order theory of DA(PA) is decidable remains
open. The first order theory of the variety of all DAs is undecidable (cf. Montagna
[18]), but so far practically nothing is known about the decidability of the first order
theories of individual (infinite) DAs.

Let us consider the O-generated subalgebra DA(PA)0 of DA(PA). An independent
description of DA(PA)0 was given in Friedman [13], where Problem 35 asks whether
the term equality problem for closed terms of DA(PA)0 is decidable (the affirmative
solution was obtained independently by Boolos, Bernardi and Montagna and van
Benthem, as noted in [20]).

Theorems 3.4 and 3.7 of this paper state that 77z(DA(PA)0), i.e. the first order
theory of DA(PA)o, is decidable but not elementary recursive; the decision procedure
and nonelementary lower bounds are obtained by a mutual interpretation of this theory
and Bϋchi's weak second order arithmetic WS1S.

Theorem 4.1 says that the theory obtained by adding free variables ranging over
DA(PA) to the language of 77*(DA(PA)o) is undecidable. (Actually, only one such
variable is necessary.) This yields the following reduction:

If DA(PA)0 is first order definable1 in DA(PA), then 77z(DA(PA)) is undecidable.

This theorem has been first proved by Shavrukov, and we have obtained his kind
permission to publish (a somewhat sharpened version of) his result with our proof.

As an application of the results of 4.1, Theorem 5.1 gives a negative answer
to a question by Feferman2 on the decidability of propositional provability logics
for recursive progressions of theories based on iteration of consistency, with modal
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operators corresponding to the theories of a given progression, and with quantifiers
ranging over their ordinal notations. We also indicate how to extend this result to
other natural types of recursive progressions.

The arithmetical interpretation of the propositional modal language induces a
natural isomorphism of DA(PA)o and DA(GL)o (i.e. the 0-generated free DA). Hence,
by Theorem 3.4, 77z(DA(GL)o) is a decidable theory. In Theorem 6.1 we show that,
for each n > 0, the first order theory of the free DA on n independent generators
is (hereditarily) undecidable. A similar result for the free DA on countably many
generators could also be easily obtained by methods of Rybakov [19].

2 Canonical Representation ofDA(PA)o In this section we review some well-
known results concerning the atomless fragment of propositional provability logic
and reformulate them in terms of DAs.

The language of propositional modal logic is that of the ordinary propositional
calculus enriched by a unary modal operator D. The system GL (after Godel and
Lob) is defined by the axioms:

classical tautologies in the modal language;

•OP -> β)-> (PP-+ΠQ);
DP -> DDP;
D(DP -> P) -H- DP;

and rules

P, P -> Q\- Q (modus ponens);
P h DP (necessitation).
Solovay's logic 5 can be axiomatized by all theorems of GL and the modal

reflection schema
D P - > P,

with modus ponens as the sole inference rule.
The system GL is complete with respect to finite irreflexive transitive Kripke

models (cf. [20]). The First Arithmetical Completeness Theorem for GL due to
Solovay [21] states that GL derives exactly those modal formulas which are prov-
able in PA under the interpretation of propositional variables as arbitrary arithmetic
sentences, and D as Pr(r>~*). Solovay's Second Theorem states that, under the same
interpretation, the system 5 axiomatizes the set of all universally true provability
schemata.

Visser (preceeded by Boolos in [7]) suggested a convenient format for Kripke
semantics for S (cf. [24]). A Kripke model X = (K,<, Ih) is called a tail-model iff
there is a node r e K such that:

1. {x € K\ x -< r} is a linearly ordered subset of K of order type (ω + 1)*

2. the set {x e K \ r < x} is a finite tree;

3. for any x e K such that x •< r, and for every propositional variable p

x Ih p iff r Ih p.

The set {x e K \ x < r} is usually referred to as the "tail" of the model X. It is
not difficult to show that, for any modal formula Q, S V- Q iff Q is forced at the
lowermost node of every tail-model.
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In this section, we are mainly interested in the atomless fragment of GL. Atomless
modal formulas are those containing no propositional variables, i.e. built up from J_
(falsum) using D and boolean connectives. The arithmetical interpretation * of such
formulas is defined inductively as follows:

-L* = (0 = 1);
* commutes with boolean connectives;

Thus, by Solovay's First Theorem we have:

G L h β iff P A h β * ,

for every atomless modal formula Q.
The Kripke Completeness Theorem for the atomless fragment of GL could be

reformulated in a strengthened form. Consider the structure (ω, >) as a reverse well-
founded Kripke frame. The forcing relation Ih of atomless modal formulas on ω is
defined uniquely by stipulating that for every n e ω n JF JL, n Ih (•) commutes with
boolean connectives, and

nWΏQ & (Vm <n m Ih Q).

Lemma 2.1 For every atomless modal formula Q,

GL h Q iff Vm eω m\\- Q.

Proof: Easy.

The useful notion of the trace of amodal formulais developed in Artemov [1],[3].
For technical reasons we shall deal here with the dual notion of the spectrum.

Definition 2.2 The spectrum of an atomless formula Q is the set

sp(Q)^± {n eω\n\\- Q}.

Lemma 2.3 ([1]) For any atomless modal formulas Q, R

1. GLY- Q & sp(Q) = ω;

sp(QvR) = sp(Q)Usp(R\

sp(^Q) = ω\sp(Q);

2. ^(DW + 1_L) = {0,..., n) for all n e ω;
•?• sp(Q) is either a finite or a cofinite subset ofω;
4. sp(Q) is finite iffQ* is false.

Proof: Statement 1 is equivalent to Lemma 2.1 2 and 3 are obvious; 4 is verified by
an easy induction on the build-up of Q. To prove 5 it is sufficient to check the "only
if" part of the statement. Suppose that sp(Q) is finite. Then for some n e ω

jp(β)c{0,...,Λ}

and hence by Statement 3

sp(Q)Csp(Dn^l).

Statements 1 and 2 imply that

GLY- β - > ( D n + 1 l ) .

By the Arithmetical Completeness Theorem

PA h Q* -+ (Dn+1_L)*,

consequently if β* were true, so would be (Πn+1 _L)*, which is not the case.
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Now we turn to diagonalizable algebras. One of the simplest examples of a
DA is Hit free DA on n independent generators DA(GL)n. It can be described as
the Lindenbaum boolean algebra of GL in the language with exactly n prepositional
variables, the diagonal operator r being defined in the natural way:

t([Q]GL) - PfilGL.

(Here [QJGL denotes the equivalence class of a formula Q modulo GL-provable
equivalence.) In particular, for n = 0 we obtain the Lindenbaum diagonalizable
algebra DA(GL)0 of the atomless fragment of GL. The full Lindenbaum algebra
DA(GL) is identified with the free DA on countably many independent generators.

The arithmetical interpretation * induces a natural homomorphism of DA(GL)o
into DA(PA):

[β]<3L »-> [β*]PA

The First Arithmetical Completeness Theorem ensures that for any atomless modal
formulas Q and R

PA I- β* *> R* iff G L h β o R.

Hence * is a monomoiphism. Clearly, the arithmetical interpretations of atomless
modal formulas constitute (modulo PA-provable equivalence) exactly the O-generated
subalgebra DA(PA)o of DA(PA). We immediately obtain the following.

Corollary 2.4 DA(PA)0 is isomorphic to DA(GL)0.

For a subset X c ω define:

m(X)^±{0,...,min(α>\Z)},

where we assume min 0 = oo and thus m(ω) = ω.

Lemma 2.5 For every atomless modal formula Q

sp(ΠQ)=m(sp(Q)).

Proof: This is just a ftformulation of one of the inductive clauses of the definition
of forcing on ω.

Corollary 2.6 The boolean algebra DAo of the finite and coftnite subsets of ω
together with the operator mis a DA, and sp(-) is an isomorphism ofDA(GL)0 and
DAo.

Proof: By Lemmas 2.3 and 2.5 sp( ) is a homomorphism of DA(GL)o into DA0.
Lemma 2.1 ensures that sp(-) is a monomorphism. To show that sp( ) is onto, for
every n e ω and every finite X e ω consider the following atomless formulas:

Cn τ± Dn+1± A - D w ±

and

Cx ̂  V C»
neX

An easy calculation using Lemma 2.3 shows that

sp(Cn) = {n} and sp(Cx) = X.

Hence all finite (and consequently, all cofinite) subsets of ω are within the range of
sp(-).
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Corollaries 2.4 and 2.6 combined together imply that DA(PA)0 is isomorphic to
DAo. This isomorphism is called the canonical representation of DA(PA)0. From
now on we do not distinguish DA(PA)o or DA(GL)o from DA0.

3 An equivalence between Th(DAo) and WS1S We begin this section with an
explicit description of formal languages involved.

The language £ i of the first order theory of DA0 contains variables x0, x\,...
ranging over the finite and cofinite subsets of α>; constants 0 and 1 (for the empty
set and for ω respectively); functional symbols for boolean operations Π, U, — a
functional symbol m for the diagonal operator, and = as the only predicate symbol.
The theory Th(ΌA0) is the collection of all £ i -formulas valid in ω under the natural
interpretation.

The language £2 of WS1S contains two sorts of variables: α0, 01 > for natural
numbers and Ao, Ai , . . . for finite subsets of ω\ a constant 0 (for the number 0);
binary predicate symbols < and = for the standard relations on natural numbers and
a binary predicate symbol e. WS1S is the collection of all valid £2-formulas.3

To define an embedding of 77z(DAo) into WS1S we need an auxiliary language
£4 obtained by adding to £1 an infinite list of new variables Ao, Ai, . . . ranging
over the finite subsets of ω. A translation a of £1-formulas to £'α -formulas is defined
inductively by specifying that a preserves atomic formulas; a commutes with boolean
connectives and for all £1 -formulas F,

aO/xt F(Xi)) ^ VA, (α(F)(A,) Λ α(F)(-A,)) .

Lemma 3.1 For every £ \ -sentence Q

ω 1= Q iff ω 1= α ( g ) .

Proof: Follows by a straightforward induction on the build-up of Q.

Note that for any £i-formula Q9 all the quantifiers occurring in cc(Q) actually
range over the finite subsets of ω. Therefore, if Q is a sentence, a(Q) does not
contain other variables than Ao, A\,....

We shall define a translation β of £^-formulas in the alphabet Ao, Aly... into
the language £2 of WS1S. For every ^-term ί (A 0 , . . . , An) a £2-formula "α e
t (Ao,.. . , Any is defined by induction on the build-up of t as follows:

"α e AΓ ^±(ae A, );

" f l E 0" ^± (0 φ 0), "α 6 1" ^ (0 = 0);

"aetU s" ^ ("a e Γ v "α e s'9), "a e t n s" ^ ("a e t" A "a e s")\

"a e -r ^ ^"a e Γ;

" f l e m(t)" ^Vb(b<a-*"be Γ).

By definition, the translation β commutes with boolean connectives and quanti-
fiers of the form VAZ (•) and 3A, (•), and for atomic formulas β is defined as follows:
for any terms t and s in the alphabet Ao, Ai, . . .

β(t = s)^± Va("a e t" *> "a e s").



PROPOSIΉONAL QUANTIFIERS IN PROVABILITY LOGIC 407

Lemma 3.2 For each L\-sentence Q containing variables for finite subsets ofω
only,

ω£Q iffωtβ(Q).

Proof: Since β commutes with quantifiers and boolean connectives, it suffices to
verify the lemma for atomic formulas Q. By Lemmas 2.3 and 2.5, for every -C^-term
t in Ao, A\,... the formula "α e t" adequately expresses the fact that a belongs to a
subset of ω denoted by t. Hence β(t = s) means that t and s have exactly the same
elements, which is equivalent to t = s.

Putting Lemmas 3.1 and 3.2 together one obtains the following.

Corollary 3.3 For every & \ -sentence Q

Q e Th(DA0) iff β(a(Q)) e WS1S.

Theorem 3.4 The first order theory of ΌA(PA)0 is decidable.

Proof: This is a combination of the previous corollary and BϋchΓs result on decid-
ability of WS IS ([8]).

Note that the given proof of Theorem 3.4 does not provide a feasible decision
procedure for Th(DA0). The translation a already causes an exponential growth of
lengths of formulas, and we have to use an extremely inefficient decision algorithm
for WS1S afterwards. Our next result shows that the decision problem for 77ι(DA0)
really is of high complexity: we shall describe a natural translation of WS1S into
ΓΛ(DAo), which increases the lengths of formulas only linearly . This will allow us
to extend to Th(DA0) the nonelementary lower bounds on computational complexity
of a decision procedure for WS1S, obtained by Meyer in [17].

Working within the language /Ci, fix an auxiliary variable z along with two
infinite lists of distinct variables: uo,u\,... and t>o, vχ> — Define:

x ay — χn-y = 0\

"ui is a singleton" ^ M / ^ 0 Λ V Z ( Z C « , ^> z = 0 v z = Wί);

uvt is finite" ?=± 3 z ( z / I Λ D / C m ( z ) ) .

A translation γ from £2 into £1 is defined inductively as follows:

• for atomic formulas

γ(0 e At) ̂  (mO c t,,), γ(aj e A,) - (uj c Vi);

γ(fli < dj) *± (UJ c -m(-Ui)), γ(0 < α; ) ^ (UJ c -mO);

γ{ai = dj) ?± (Ui = Uj), γiβi =0)?± (ui = mO);

γ(ai< 0 ) ^ ( 0 ^ 0 ) , y(0 = 0)^(0 = 0);

• γ commutes with boolean connectives;
• κ(Vflϊ Q) ^ Vw/ ("ui is a singleton" -> y(Q))\
• γQ/Ai Q) ^ Vυi ("vt is finite" «• y(Q)).

It is clear that wo, wi,... imitate variables over natural numbers, and v0, vi,...
play the role of those over finite subsets of ω. This fact is formally established by the
following.
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Lemma 3.5 Suppose Q(ao,..., a^, A o , . . . , Am) is an arbitrary ^-formula. Then

for any n o , . . . , n^ e ω and any finite subsets Xo, ...,Xm ofω,

ω 1= β ( π 0 , , nky Xo,. . . , Xm) iff ω \= γ(Q)({n0},..., {**}, Xo,..., Xm).

Proof: Routine induction on the build-up of Q.

Corollary 3.6 For every ^-sentence Q

β e W S I S iff γ(Q)eTh(ΌA0).

Theorem 3.7 77J(DA 0 ) is not elementary recursive.

Proof: It is easily seen that the translation γ gives only a linear increase of lengths of
formulas. By a well-known result of Meyer [17] WS1S has a nonelementary lower
bound on the complexity of a decision procedure, hence 7%(DAo) is not elementary
recursive as well.

4 A two-sorted undecidable quantified provability logic In this section we will
show that the first order theory of DA(PA) enriched by a unary predicate defining the 0-
generated subalgebra DA(PA)0 of DA(PA) is undecidable. In fact, we shall get an even
stronger result: the theory obtained by adding to the language of 7%(DA(PA)o) just
one free variable ranging over arbitrary arithmetic sentences is already undecidable.
Thus, two decidable theories—the universal theory of DA(PA) and the first order
theory of DA(PA)o—combined together yield an undecidable one. This result also
provides a negative answer to a question on the decidability of quantified propositional
provability logics for progressions of theories, raised by Feferman.

Let £3 be the language of DA(PA)0 enriched by an infinite list of new (Greek)
variables a, β, γ,... ranging over (equivalence classes) of arbitrary arithmetic sen-
tences. Small Latin variables JCO, xi,... are reserved for elements of DA(PA)o. Thus,
£3 extends both the languange of DA(PA)0 and that of DA(PA).

We shall keep the notation

DA(PA) 1= β ( α 0 , . . . , a*, Xό, , xm)

for arbitrary /^-formulas Q and arbitrary elements α o , . . . , α* and xo,..., xm of
their respective algebras. For the sake of readability we shall identify terms of
£ 3 and quantifier-free modal formulas in the two-sorted alphabet, and also ignore
the distinction between arithmetic sentences and elements of DA(PA). The boolean
ordering on DA(PA) will be denoted c , i.e. for any sentences a and β

DA(PA) *= a c β iff PA h a -> β.

Let £3 denote the fragment of £3 consisting of those £3-formulas, which do
not contain quantifiers over the Greek variables.

Theorem 4.1 The set of all Hyformulas Q(aOy..., α*, x0,..., xm) such that

D A ( P A ) 1= V α 0 . . . α * V * o . . . x w β ( α 0 , . . . , « * , * < ) , . . . , Xm)

is undecidable.
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Proof: We apply a common method of obtaining undecidability results of this sort.
We shall define a parametric relative interpretation of a well-known hereditarily
undecidable4 theory—the first order theory of finite partially ordered sets—in the set
of formulas in question. More specifically, we shall exhibit two /^-formulas C/(α, x)
and R(β,x, y) such that for any given finite (irreflexive) partial ordering(? = (P, <)
one can find arithmetic sentences a and β such that the binary relation R(β, , •)
defines on {x | DA(PA) 1= U(a, x)} a partial ordering isomorphic to ?.

Clearly, for these particular a and β and for every sentence Q in the language
of the theory of partially ordered sets, we shall have:

9 £ Q iff DA(PA) £ ~Q{μ, β),

where ~Q(a, β) is obtained from Q by relativizing all quantifiers to U(a, •) and
translating x < y as R(β,x,y). (Note that a and β are the only Greek variables
occurring in ~Q(a, β).) Consequently, the set of all sentences Q in the language of
partially ordered sets such that

DA(PA) 1= Vα, β (3xU(a, x) -> ~Q(a, β))

is a subtheory of the theory of finite partial orderings, and hence is undecidable. As
<2(α, β) is constructed effectively from Q, the result will follow.

Now we proceed to an explicit construction. We are able to write out the formulas
ί/(α, x) and R(β, x, y) at once:

t/(α,x) τ± ( J c ^ θ Λ V y ( y C χ - > ) ; = jcvy = O ) Λ χ C α ) ,

R(β,χ,y) ^ GβΛjCOGβΛy)),

where, as usual, O( ) stands for -»D-«( ).

Let a finite irreflexive partial ordering ίP = (P, -<) be given. Without loss of
generality assume that P c. ω and that •< agrees with the standard ordering > on
natural numbers in the sense that

Vfl, fo E P (a <b =ϊa> b).

We seek arithmetic sentences a and β such that U(a, x) and R(β, x, y) define a
similar ordering within DA(PA).

Clearly, the formula U(μ, x) asserts that x is an atom of DA(PA)o which lies
below a. By the results of Section 2 we know that atoms of DA(PA)0 are exactly the
arithmetical interpretations of atomless modal formulas

d τ± (Di+1l A - ΰ ± ) , / e ω.

Hence for

ieP

£7(α, •) selects exactly the set {C* | i e P} of elements of DA(PA). The proof of
Theorem 4.1 will be completed, if we manage to find an arithmetic sentence β such
that for all iJeP

l<j iff DA(PA) ^ Λ C / C O(β A CJ).

The sentence β is constructed by methods of Solovay: we shall transform the partial
ordering ίP into a Kripke model (P* and invoke the Second Arithmetical Completeness
Theorem.
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°K I1 °l Λ

^ v 0 .

Figure 1: Transformation of 7 into ίP*. Nodes of fP* marked by numbers are precisely those
where the variable p is forced. Numbers themselves indicate depths of the nodes.

Lemma 4.2 There is a finite irreflexive treelike Kripke model

such that for all i, j e P

i < J iff Vx e P* x \\- p Λ C, -> O(p Λ C/),

p being a fixed propositional variable.

Proof: The proof is long but rather straightforward. The reader will probably grasp
the idea more quickly by looking at a typical example (Fig. 1), than by inspecting
our detailed presentation.

First, we have to fix some notation concerning finite partial orderings. The depth
function d o n a partial ordering J> = (P, <) is a mapping of P to natural numbers,
uniquely determined by the following condition: for all x e P

d ( x ) ;=± m a x {d(y) + l \ x < y ] ,

where we assume max 0 = 0. The height h (7) of a partial ordering 7 is

max {d(y)\yeP}.

For a given element a e P , ίP[fl] is the restriction of the ordering ^ on P to a subset

P [ f l ] - {x e P \ a < * } -

Clearly, hφ[ά\) < h(p) unless a is the infimum of V.
The required Kripke model IP* is constructed by recursion on the height of 7,

assuming without loss of generality that 9 has an infimum. At each step we shall
guarantee in addition that A(0>*) = inf(ίP). (Recall that P c ω and hence inf(rJ>) is
just a natural number.)

Basis. P is a singleton {n}. Take P* τ± {0,..., n), ̂ *=^< and for each element
x e P* let

x Ih p iff x = 0.

Inductive Step. Let ao be the infimum of IP, and let a\,..., a^ enumerate all the
immediate successors of ao (with respect to <) in decreasing order (with respect to
<). Since •< agrees with >, obviously ao > a\.
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By Induction Hypothesis one can construct Kripke models

naif ^ (P[aiT,<i,Wi), i = 1 ik

of heights a\>..., dk respectively. Without loss of generality assume all P[α z]*
pairwise disjunctive.

To construct the required models* pick a linearly ordered set (Γ, <τ) ofao—ai
elements, disjunctive with all the P[fl*], and put

k

P* - TU{JP[aiT.

The ordering K* on P* is the transitive closure of all the orderings -<, together with
<τ and the following relations:

x <* y for all x e T, y e P[a{\\

b<* y for all y e P*, y φ b,

where b is the minimum of Γ. Finally, define Ih as 11-,- on each P[α, ]*, and for x e T
put

x Ih p iff x = b.

It is easy to see that the height of 9* equals ao as required, so the whole construction
is correct.

Next we formulate and successively prove the following auxiliary lemmas:

Lemma 4.3 ή(ίP*) = infOJ5) and the variable p is forced at the root of the model

α>*.

Proof: Trivial.

Lemma 4.4 Vx e P* (x Ih p =» d(jc) € P).

Proof: By induction on h (ίP).

Lemma 4.5 Vα € P 3x e P* 3>[α]* ^ ?*[x].

Proof: By induction on Λ (ίP).

Lemma 4.6 Vα e P 3x e P* (x Ih p & d(x) = a).

Proof: Follows from Lemmas 4.3 and 4.5.

Lemma 4.7 Vx e P* (x Ih /? & d(jc) = α =^ ^ [ x ] ^ ^[α]*).

Proof: We argue by induction on the height of 3\ Suppose that x e IP* and x Ih /?,
then either x is the root of ?*, α = «o = inf(ίP) and hence

9*[x] ĉ  3>* - 3>[fl]*;

orx € P[aiT and then

T[x] ^ (ίPίfl,-]*)^] ^ 3>[fl]*

by Induction Hypothesis.
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Lemma 4.8 For all i, j e P, ifi -< j then

Vx e P* x Ih p A Q -> O(p A Cj).

Proof: Suppose x Ih p A C, , then d(x) = i and by 4.7

9*[x]~9[i]*.

Since j e P[i], by Lemma 4.6 there is an y e P[i]* such that y Ih p and d(y) = y.
Hence for some / e P*[JC], / Ih p and d ( / ) = , ergo y' \\- p A CJ. It follows that
X Ih <>(/? Λ Cj).

Lemma 4.9 For all i, j e P, ifi -fi j then

3xe P* ( x Ih p A Ct & x V O(p A Cj)).

Proof: Since i 6 P, by Lemma 4.5the model 9[i]* has the form 1P*[Λ:] for some
x e P*. Since h(9[i]*) = i, clearly all- /> Λ C, . On the other hand, if y e P*[x]
and j Ih /?, then rf(y) € P[i] by Lemma 4.4. It follows that either = i and y = x,
or j & P[i] and then y Ih ->C;. Thus, we have shown that x \\-Π(p -> -*Cj).

Lemmas 4.8 and 4.9 complete the proof of Lemma 4.2.

Lemma 4.10 There is an arithmetic sentence β such that for all i, j e P

i < j iff DA(PA) 1= β A Ct c O(β A CJ).

Proof: With the given partial ordering IP we associate the following modal formula

Q9<J>):

/\ Π(J> A Ci -• O(p A Cj)) A /\ -iD(/7 Λ Ci -• O(/? A C/)).

We claim that -^Qrj>(p) is not derivable in Solovay's logic 5. Indeed, for the
model 9* constructed in Lemma 4.2 obviously

Vx e P* x Ih βy(p).

By appending at the root of 9* a tail T such that for every x e T x IF p, the model
7* is transformed into a tail-model validating Qy(p).

Solovay *s Second Theorem guarantees that there exists an arithmetical interpre-
tation * such that Qy is true, i.e. for all i, j e P

PA h p* A c ; -> O(p A Cj)* if i < j

and
PA \f p* A Cf -* O(p Λ Cy )* if i ^ j .

Take β = /?*.

Thus, we have shown that the theory of finite partial orderings is parametrically
interpretable in the set of all £3 -formulas universally true in DA(PA). This completes
the proof of Ήieorem 4.1.

Since the parameter a in the proof of Theorem 3 always belongs to DA(PA)0, it
could be replaced by a Latin variable. Thus, we get the following corollary.

Corollary 4.11 The set of all ^-formulas Q(μ, JCO, . . . , xm)> containing only one
Greek variable a, such that

DA(PA) 1= VαVxo . . . xmβ(α, x 0 , . . . , x«),

is undecidable.
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5 Provability logics for recursive progressions of theories As an application of
techniques developed in the proof of Theorem 4.1, we shall now demonstrate that
quantified propositional provability logics for recursive progressions of theories are,
in the most natural cases, undecidable.

Recursive progressions are parametric families of theories of the form (7z)zez,
where Z is a set of constructive ordinal notations. When speaking about progres-
sions, we shall always assume that there exists an arithmetic Σi-formula Prj(z; x)
adequately expressing the predicate "x is provable in the theory 7Z", and that the set
Z is recursively enumerable5 and gives exactly one notation to each finite ordinal.

The primary example of a recursive progression is (roughly) the following trans -
finite recursive progression based on iteration of consistency, first studied by Tur-
ing [22] and Feferman [11]:

70 ^ PA, 7λ+ί ^ 7λ + Con(7λ) and 7λ τ± ( J 7μ,

for λ a limit ordinal. (Here we identify Z with an initial segment of constructive
ordinal numbers.)

Feferman suggested the following variant of a quantified provability logic for
recursive progressions of theories. With the given system of ordinal notation Z we
associate a language £(Z) containing two sorts of variables: α, β, γ,... for arbi-
trary arithmetic sentences, and JC, y, z , . . . for ordinal notations from Z. To each
Latin variable x in £(Z), there corresponds a unary modal operator [JC]. Formulas of
£(Z) are built up from Greek variables using boolean connectives, modal operators
and quantifiers over Latin variables in the natural way. The arithmetical interpreta-
tion * with respect to a progression (7z)zez translates Greek variables as arithmetic
sentences, commutes with boolean connectives, and for every £(Z)-formula Q

(Vz QT ^ (Vz € Z β*),

(bJβ)*^Λ*fe; Γ β* π ).

Theorem 5 1 Let (7z)zzz be a recursive progression based on iteration of consis-
tency. Then the set of all £ (Z)-formulasy true under every arithmetical interpretation
with respect to (7z)zez> is undecidable.

Proof: The two-sorted language £3, which played a role in Theorem 4.1, could be
given many other natural provability interpretations. In fact, one could let the Latin
variables of £3 range over any specific subset D of DA(PA). Here we shall make use
of the interpretation of Latin variables as iterated consistency assertions associated
with(T z ) z 6 Z :

D^ {Con(7z) I z e Z } .

We claim that the statement of Theorem 4.1 also holds for this modified interpretation.
A proof closely follows the given proof of Theorem 4.1: it is easy to see that the first
order theory of finite partial orderings is parametrically interpretable in the set of all
universally true (in the new sense) formulas of £3.

Note that for every i e ω the atom C*+1 of DA(PA)o is PA-equivalent to the
formula

Con(7i) /\Pr(r^Con(7iV).
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It follows that, for α g CQ, the formulas

£/(«, x) — (x c a)

and
Λ08, x,y)^(βAxA Π-*x c <>(£ Λ y Λ D-y))

define within DA(PA) exactly the same partial ordering as the one in the proof of
Theorem 4.1. Hence the result.

Turning back to the provability logics for progressions of theories in the sense
of Feferman, define a translation o of the language £3 into £(Z) as follows:

• o preserves Greek variables and commutes with boolean connectives and quan-
tifiers;

• for any Latin variables, (x)° τ=± ->[JC]±.

Clearly, for each £3-formula Q(a\,..., an)

DA(PA)tVal9...,anQ(a1,...,an)

iff for every arithmetical interpretation *

This completes the proof of Theorem 5.1.

One can prove the analogue of Theorem 5.1 for other natural types of recursive
progressions, such as those based on iteration of reflection principles, or for the
natural progression (IΈn)neω of finitely axiomatizable subtheories of PA. (Here IΈn

denotes an arithmetical theory, axiomatized over PRA by the schema of induction for
Έn-formulas.) Note that all these progressions satisfy the following property: for all
1, n e ω

To + Con{7i+{) h Conn(70 + OwCJi)),

where Conn (7) denotes the n times iterated consistency of a theory 7. Following the
terminology of [5], this fact could be expressed by saying that for all i the sentence
ConCJi+i) is infinitely confident in the theory To + Con(7i).

Using the results of [5], for such progressions one can modify the construction
of the model 9* in Lemma 4.2 and prove the following analogue of Lemma 4.10:

For every finite partial ordering *P there is an arithmetic sentence β such
that for all i, j e P

i < j iff DA(To) M A A C O(β Λ Dj),

where
Di ;=± Con(7i) A Ώ^Con(7i).

With this modification, the proof of Theorem 5.1 goes through almost literally
for any recursive progression satisfying the property of "infinite confidence" above.

It is probably worth mentioning here that we have actually proved a stronger
statement than the one formulated in Theorem 5.1. Our proof shows that the fragment
of the quantified provability logic for progressions of theories, consisting of £(Z)-
formulas with no occurrences of quantifiers inside modal operators, is undecidable.
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6 First order theories of free diagonalizable algebras In this section we shall
prove the following theorem:

Theorem 6.1 Foreveryn > 0, the first order theory of the free ΌA on n independent
generators DA(GL)n is undecidable.

Proof: As in the proof of Theorem 4.1, we shall construct a parametric relative
interpretation of the theory of finite partial orderings in the first order theory of
DA(GL)n. Define:

t/(α, x) ?± (x φ 0 Λ Wy (y C χ -» y = χ v y = 0) Λ x C α),

R(x,y) τ± (x£Oy).

As before, the formula ί/(α, x) distinguishes the set of atoms of DA(GL)rt below
a, although now R (x, y) is a fixed irreflexive transitive relation on the set of atoms of
DA(GL)W. To demonstrate that U and R define the required parametric interpretation,
we need some extra information on the structure of free diagonalizable algebras.

The fact that free DAs are atomic was discovered independently and in different
set-ups by many authors (see e.g. [16],[4]). A useful characterization of atoms of
DA(GL)W in terms of pήme Kripke models and their defining formulas (a notion
similar to characters of [12],[14]) was suggested in [4]. In the sequel we shall work
in the modal language with exactly n propositional variables p\,..., pn and use
appropriate finite irreflexive treelike Kripke models. We write DC Ih Q to indicate
that the formula Q is forced at the root of the model DC.

Let a Kripke model DC = (Ky <y I h) be given. A node x e K is called dispensable
iff x is not the root of DC and for every y < x in %y there is a node z > y such that
zφ x and the submodel DC[z] is isomorphic to DC[JC]. A model DC is pήme iff it does
not contain any dispensable nodes.

Lemma 6.2 To each model DC, there is a prime model %' such that for all the
formulas Qin p\,..., pn,

X Ih Q iff DC' Ih Q.

Proof: Just throw out successively all the submodels DC[z] of DC for dispensable nodes

zeK.

Corollary 6.3 If the formulas Q and R are valid in the same prime models, then

GL h Q +> R.

Lemma 6.4 To any prime model X, there exists a formula Φ% (defining formula)
such that for every prime model X!

X! Ih Φx iff DC7 ~ DC.

Proof: See [4].

Corollary 6.5 Atoms of DA(GL)n are precisely the GL-equivalence classes of
formulas of the form Φ% for prime models X.
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Proof: Clearly, if GL h Q -> Φχ9 then by Lemma 6.4 Q is false in every prime
model except X. If X Ih --Q, then by Lemma 6.2 GL I — β. Otherwise, GL h
g *> Φ K by Corollary 6.3. Hence Φ% is an atom.

On the other hand, if GL \f -* Q , then by Lemma 6.2 there is a prime model X
such that X Ih g . By Lemma 6.4 GL h Φ% -> Q, hence β is not an atom, unless
GL h Q 4> Φ x .

Let Ωn denote the set of all (isomorphism classes) of prime Kripke models in
the language with n propositional variables. For prime models %\ and X2 we shall
write %\ < %2 in case there exists a node x strictly above the root of X\ such that
%ι [x] is isomorphic to %2. By Lemmas 6.2 and 6.4 Xι < X2 is equivalent to

G L h ΦXι - * <>ΦDC2;

hence the ordering <α on Ωw is isomoφhic to the one defined by the relation

R(x, y) τ± (x c Oy)

on the set of all atoms of DA(GL)n. Therefore, to complete the proof of Theorem 6.1
it suffices to prove the following

Lemma 6.6 Every finite partial ordering is embeddable into (Ωrt, <).

Proof: Since each finite ordering is embeddable into a finite boolean algebra, it is
sufficient to embed into Qn such algebras only. Besides, for m < n the structure
(Ωm, <) is embeddable into (Ωw, <) in the obvious way. Therefore we shall give
the proof of Lemma 6.6 for n = 1, thus working in the language with exactly one
propositional variable p.

Ύhtsum
m

of models OQ = (!£,-, <i, IK), i — 1, . . . , m is defined as follows:

*Γ^ fei)Ue^}U(0);

(*» 0 •< (y, ) iff (« = & ^ -<ί y).

0 •< (JC, i ) for all (JC, i ) e K\

OVr p and for x e Kt ( (JC, 0 Ih /? ^ jclh,- /?).

In other words, taking the sum of models X\ amounts to attaching a new root 0 below
those of all the 3C, and stipulating that 0 Ih p. Clearly, 0 ^ Xt is prime, whenever
all the 3C, are prime and incomparable with respect to <.

Let Bn denote the boolean algebra of all subsets of a finite set X = {x\,..., xn).
We construct an embedding of Bn into Ωi by stages. At stage / the prime models
F(Z) corresponding to subsets Z c X of cardinality i are specified.

Stage 0. F(0) is the linear model of height n — l,p being forced at every node
o f F ( 0 ) .

Stage 1. F({i}) is the model Λ = (A, , -<,-, lh, ) of height n defined as follows.
Put

A / ^ { 0 , . . . , 2 Λ }

and for x, y e A, let x -</ y iff one of the following conditions hold:
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Figure 2: Embedding B4 into Ωi. This is the model F({x\, *2, X4}). The variable /? is forced
at all the nonlabelled nodes.

1. x, y are odd and x < y;

2. x, y are even and x < y;

3. x = 0 and y φ 0.

Finally, for x e A, define

xlK /7 iff xφHjι-i).

Clearly, all the At are prime and mutually incomparable with respect to <.

Stage k+L Suppose Z c X and \Z\ = * + 1. Let Z i , . . . , Zfc+i enumerate all
the subsets of Z of cardinality k. Put

F(Z)^0F(ZO.
1=1

By induction on \Z\ one easily shows that for any subset Z c X

Z = {JC, I Ai < F(Z) or Ai = F(Z)}

and hence for all Y c X

7 C Z iff F(7) < F(Z).

It follows that for every Z c X the model F(Z) is prime, because at stage k + 1
in the construction of F(Z) one always takes the sum of models incomparable with
respect to <. Thus, F is an embedding of Bn into Ωi as required.

Now we complete the proof of Theorem 6.1. Let a finite partial ordering (P, •<)
be given, and let Π denote a finite set of prime Kripke models given by Lemma 6.6
such that (Π, <) is isomorphic to (P, <). Put

a ?± Y Φ^c.

Clearly, by Corollary 6.5 the formula U(a, •) defines exactly the set {Φ% \ % e Π}
of atoms of DA(GL)W, and R(-, •) is apartial ordering on {Φ% \ % e Π} isomorphic
to (P,<). Hence U and R define the required parametric relative interpretation, and
consequently, the first order theory of DA(GL)W is undecidable.
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NOTES

1. However, such definability seems rather problematic.

2. Solomon Feferman asked this question in private discussions with the first of the authors.

3. For technical reasons we incorporate < into the language of WS1S instead of a func-
tional symbol for the successor operation, as in Bϋchi's original paper [8]. The two
formulations are obviously equivalent.

4. This means that any subtheory of this theory is undecidable. See [10] and [9] for the

details.

5. Actually, this requirment is superfluous, but it simplifies the construction of the uniform
provability predicates Prγ(z', x) as well as the definition of arithmetical interpretations
below.
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