
Operations on proofs that can be speci�edby means of modal logicSergei N. Artemov �AbstractExplicit modal logic was �rst sketched by G�odel in [16] as the logic with the atoms\t is a proof of F". The complete axiomatization of the Logic of Proofs LP was found in[4] (see also [6],[7],[18]). In this paper we establish a sort of a functional completenessproperty of proof polynomials which constitute the system of proof terms in LP. Proofpolynomials are built from variables and constants by three operations on proofs: \�"(application), \!" (proof checker), and \+" (choice). Here constants stand for canonicalproofs of \simple facts", namely instances of propositional axioms and axioms of LP in agiven proof system. We show that every operation on proofs that (i) can be speci�ed ina propositional modal language and (ii) is invariant with respect to the choice of a proofsystem is realized by a proof polynomial.IntroductionThe intended meaning of the intuitionistic logic was informally explained �rst in terms ofoperations on proofs due to Brouwer, Heyting and Kolmogorov (cf. [43],[44],[12]). Thisinterpretation is widely known as the BHK semantics of intuitionistic logic. However, despitesome similarities in the informal description of the functions assigned to the intuitionisticconnective, the Heyting semantics and the Kolmogorov semantics have fundamentally di�erentobjectives. The Heyting semantics explaines intuitionistic logic in terms of an unde�ned notionof intuitionistic proof. The Kolmogorov interpretation of Int as a calculus of problems [21],along with the related papers by G�odel [15],[16] intended to interpret Int on the basis ofclassical proofs, thus providing an independent de�nition of intuitionistic logic within theclassical mathematics. We call this sort of interpretation of Int classical BHK semantics.Classical realizabilities: Kleene realizability [19], function realizability [20], modi�ed re-alizability [24], Medvedev's calculus of �nite problems [31] and its variants, give conditionsnecessary but not su�cient for Int(cf.[12],[45],[46],[47]). Each of them realizes some formulas�Department of Mathematics, Cornell University, email:artemov@math.cornell.edu and Moscow Univer-sity, Russia. 1



not derivable in Int. A formalization of the BHK semantics suggested by Kreisel in [23]turned out to be based on an inconsistent theory (cf. [48], [37]). For more discussion onrealizability semntics for Int see [45].In 1933 G�odel ([15]) de�ned Int on the basis of the notion of proof in a classical math-ematical system, reminiscent to the one from the classical BHK semantics. Namely, G�odelintroduced the logic of provability (coinciding with the modal logic S4) and constructed anembedding of Int into S4. In [15] no formal provability semantics for S4 was suggested. More-over, G�odel noticed that the straightforward interpretation of 2F as the arithmetical formulaProvable(F ) \there exists a number x which is the code of a proof of F".was incompatible with S4 (cf.[9],[10]).Let us consider, for example, the �rst order arithmetic PA. If ? is the booleanconstant false, then the S4-axiom 2?!? becomes a statement Consis PA, ex-pressing the consistency of PA. By necessitation, S4 derives 2(2?! ?). Thelatter formula expresses the assertion that Consis PA is provable in PA, whichcontradicts the second G�odel incompleteness theorem.The issue of a provability model for S4 was studied by G�odel [16], Lemmon [28], Myhill[35],[36], Kripke [25], Montague [34], Mints [33], Kuznetsov & Muravitskii [27], Goldblatt[17], Boolos [9],[10] Shapiro [38],[39], Buss [11], Artemov [1], and many others. However, theproblem of a formal provability semantics for S4 has remained open.A principal di�culty here is caused by the existential quanti�er over proofs in Provable(F ).Indeed, the interpretation of the formula 2(2F!F ) is`it is provable that \Provable(F ) implies F" 'Provability in PA can be characterized as \true in all models of PA", including the non-standard ones. In a given model of PA an element that instantiates the variable x from theexistential quanti�er for the code of a proof of F in Provable(F ) may be nonstandard. Insuch a case Provable(F ) is true in this model, but there is no \real" PA-derivation behindsuch an x. So, PA is not able to conclude that F is true from Provable(F ) is true since thelatter formula does not necessarily deliver a proof of F .This consideration suggests replacing the provability formula Provable(F ) by the formulafor proofs Proof(t,F) and the existential quanti�er on proofs in the former by Skolem styleoperations on proofs in the latter. Such a conversion would help to avoid evaluation of proofsby nonstandard numbers.The problem of �nding the logic which accommodates the atoms t is a proof of F (the logicof proofs) has met considerable technical di�culties. The usual Skolem methods of convertingquanti�ers into functions do not apply here, since there are no universal laws of commutation2



of the provability operator with the quanti�ers. In order to �nd the logic of proofs one has toaddress the issue of an appropriate set of proof terms t �rst. In particular, we have to �gureout what operations on proofs are needed to express all logical laws of provability. Some ofthese operations come from the proof of G�odel's second incompleteness theorem. Within thatproof it was established thatPA ` Provable(F ! G) ^ Provable(F ) ! Provable(G):This formula is a \forgetful" version of the following theorem.For some computable function m(x; y)PA ` Proof (s; F!G) ^ Proof (t; F ) ! Proof (m(s; t); G):A similar decoding can be done for another lemma from G�odel's second incompleteness the-orem PA ` Provable(F )! Provable(Provable(F )).For some computable function c(x)PA ` Proof (t; F )! Proof (c(t);Proof (t; F )):In his Lecture at Zilsel's, 1938, (published in 1995 in [16], see also [37]) G�odel sketched aconstructive version of S4 with the basic propositions \t is a proof of F" and operations similarto m(x; y) and c(x). This G�odel's suggestion in principle su�ces to justify the re
exivityprinciple along with the necessitation rule. However, the questions about a complete set ofterms and axioms for the logic of proofs, as well as the question about its ability to realizethe entire S4 have remained unanswered. It turned out that G�odel's sketch of 1938 lacks theoperation \+", without which a realization of S4 cannot be completed.The complete axiomatization of the logic of proofs LP was found by the author indepen-dently of G�odel's paper [16], which was published as late as 1995. The �rst presentations ofLP took place at the author's talks at the conferences in M�unster and Amsterdam in 1994.Preliminary versions of LP appeared in Technical Reports [4], [5], [7], cf. also the survey [18].In these papers the axiom systems for LP in Hilbert, Gentzen and natural deduction formatwere found, soundness and completeness with respect to the standard provability semanticswere established. It was also discovered that given S4-derivation of a modal formula F onecan reveal its explicit provability meaning by assigning proof terms to the modalities in such away that the resulting formula F r in the LP format is derivable in LP . This yields a positivesolution to the problem of �nding the intended provability semantics for the modal logic S4.Since Int is embedded into S4 , for example, by the G�odel translation (cf. [15], [44], [12]),the above realization of S4 in LP simultaneously provides an adequate realization of Int in3



LP . Therefore, LP may be regarded as the natural formalization of the classical Brouwer-Heyting-Kolmogorov semantics for the intuitionistic logic. Intuitionistic logic Int turned outto be complete with respect to this semantics (this was implicitly conjectured by Kolmogorovin 1932).In LP the notion term t is a proof of F and term t has type F are subsumed by the basicLP proposition t :F . Under these interpretations LP naturally encompasses combinatory logicand �-calculi corresponding to intuitionistic and modal logics. In addition, LP is strictly moreexpressive because it admits arbitrary combinations of \:" and propositional connectives. Bytreating \:" uniformly, LP uni�es the semantics of modality, combinatory, and �-terms. Allthese objects are realized as proof terms in LP .Gabbay's Labelled Deductive Systems ([14]) may serve as a natural framework for LP .Intuitionistic Type Theory by Martin-L�of [29], [30] also makes use of the format t :F with itsinformal provability reading. LP may also be regarded as a basic epistemic logic with explicitjusti�cations; a problem of �nding such systems was raised by van Benthem in [8].In this paper we establish some sort of the functional completeness property of the systemof LP proof terms (called proof polynomials). We show that every operation on proofs that(i) can be speci�ed in a propositional modal language and (ii) is invariant with respect to thechoice of a proof system is realized by a proof polynomial1. This theorem justi�es the choiceof the set of proof terms for LP and thus LP itself. Along with the completeness theorem forLP and the theorem about the realization of S4 in LP ([4], [7]) this demonstrates that LP isindeed the logic of proofs in the format with \t is a proof of F" and S4 is indeed the modallogic of explicit provability. In other words, given the intended provability semantics of t :Fand 2F there are no operations on proofs other than proof polynomials, no logical principlesof proofs other than derivable in LP and no principles of provability other than derivable inS4.1 Logic of Proofs1.1 De�nition. The language of Logic of Proofs (LP) containsthe usual language of classical propositional logicproof variables x0; : : : ; xn; : : :, proof constants a0; : : : ; an; : : :function symbols: monadic !, binary � and +operator symbol of the type \term : formula".We will use a; b; c; : : : for proof constants, u; v; w; x; y; z; : : : for proof variables, i; j; k; l;m;nfor natural numbers. Terms are de�ned by the grammarp ::= xi j ai j !p j p1 � p2 j p1 + p21The �rst version of this theorem appeared in the technical report [4].4



We call these terms proof polynomials and denote them by p,r,s,t: : :. By analogy we refer toconstants as coe�cients. Constants correspond to proofs of a �nite �xed set of propositionalschemas. We will also omit � whenever it is safe. We also assume that (a � b � c), (a � b � c � d),etc. should be read as ((a � b) � c), (((a � b) � c) � d), etc.Using t to stand for any term and S for any propositional letter, the formulas are de�nedby the grammar � ::= S j �1!�2 j �1^�2 j �1_�2 j :� j t :�We will use A;B;C; F;G;H;X;Y;Z for the formulas in this language, and �;�; : : : for the�nite sets (also �nite multisets, or �nite lists) of formulas unless otherwise explicitly stated.We will also use ~x; ~y; ~z; : : : and ~p;~r; ~s; : : : for vectors of proof variables and proof polynomialsrespectively. If ~s = (s1; : : : ; sn) and � = (F1; : : : ; Fn), then ~s : � denotes (s1 :F1; : : : ; sn :Fn),W� = F1_ : : :_ Fn, V� = F1^ : : :^ Fn. We assume the following precedences from highestto lowest: !; �;+; :;:;^;_;!. We will use the symbol = in di�erent situations, both formaland informal. Symbol � denotes syntactical identity, pEq is the G�odel number of E.The intended semantics for p : F is \p is a proof of F", which will be formalized in thenext section. Note that proof systems which provide a formal semantics for p :F are multi-conclusion ones, i.e. p may be a proof of several di�erent F `s (see Comment 1.7).1.2 De�nition. The system LP0. Axioms:A0. Finite set of axiom schemes of classical propositional logic in the language of LPA1. t :F ! F \veri�cation"A2. t : (F ! G) ! (s :F ! (t�s) :G) \application"A3. t :F ! !t : (t :F ) \proof checker"A4. s :F ! (s+t) :F , t :F ! (s+t) :F \choice"Rule of inference:R1. F ! G FG \modus ponens".The system LP is LP0 plus the ruleR2. ,c :Aif A is an axiom A0 { A4, and c a proof constant \axiom necessitation".A Constant Speci�cation (CS) is a �nite set of formulas c1 : A1; : : : ; cn : An such that ci isa constant, and Fi an axiom A0 { A4. Each derivation in LP naturally generates the CSconsisting of all formulas introduced in this derivation by the necessitation rule.5



1.3 Comment. Proof constants in LP stand for proofs of \simple facts", namely propo-sitional axioms and axioms A1 { A4. In a way the proof constants resemble atomic con-stant terms (combinators) of typed combinatory logic (cf. [44]). A constant c1 speci�ed asc1 : (A! (B ! A)) can be identi�ed with the combinator kA;B of the type A! (B ! A).A constant c2 such that c2 : [(A! (B! C)) ! ((A! B)! (A! C))] corresponds to thecombinator sA;B;C of the type (A! (B!C)) ! ((A!B)! (A!C)). The proof variablesmay be regarded as term variables of combinatory logic, the operation \�" as the applicationof terms. In general an LP -formula t : F can be read as a combinatory term t of the typeF . Typed combinatory logic CL! thus corresponds to a fragment of LP consisting only offormulas of the sort t : F where t contains no operations other than \�" and F is a formulabuilt from the propositional letters by \!" only.There is no restriction on the choice of a constant c in R2 within a given derivation. Inparticular, R2 allows to introduce a formula c :A(c), or to specify a constant several timesas a proof of di�erent axioms from A0 { A4. One might restrict LP to injective constantspeci�cations, i.e. only allowing each constant to serve as a proof of a single axiom A within agiven derivation (although allowing constructions c :A(c), as before). Such a restriction wouldnot change the ability of LP to emulate classical modal logic, or the functional and arithmeticalcompleteness theorems for LP (below), though it will provoke an excessive renaming of theconstants.Both LP0 and LP enjoy the deduction theorem�; A ` B ) � ` A!B;and the substitution lemma: If �(x; P ) ` B(x; P ) for a propositional variable P and a proofvariable x, then for any proof polynomial t and any formula F�(x=t; P=F ) ` B(x=t; P=F ):For a given constant speci�cation CS under LP(CS) we mean LP0 plus CS. Obviously, thefollowing three statements are equivalent� \F is derivable in LP with a constant speci�cation CS",� LP(CS) ` F� LP0 ` VCS ! F .1.4 Proposition. (Lifting lemma) Given a derivation D of the type~s :�;� `LP F;6



one can construct a proof polynomial t(~x; ~y) such that~s :�; ~y :� `LP t(~s; ~y) :F:Proof. By induction on the derivation ~s : �;� ` F . If F = si :Gi 2 ~s : �, then put t :=!siand use A3. If F = Dj 2 �, then put t := yj . If F is an axiom A0 { A4, then pick a freshproof constant c and put t := c; by R2, F ` c : F . Let F be introduced by modus ponensfrom G ! F and G. Then, by the induction hypothesis, there are proof polynomials u(~s; ~y)and v(~s; ~y) such that u : (G! F ) and v :G are both derivable in LP from ~s :�; ~y :�. By A2,~s : �; ~y :� ` (uv) :F , and we put t := uv. If F is introduced by R2, then F = c :A for someaxiom A. Use the same R2 followed by A3: c :A !!c : c :A, to get ~s : �; ~y :� `!c :F , and putt :=!c.JNote that if � `LP0 F; then one can construct t(~y) which is a product of proof constants andvariables from ~y such that ~y :� `LP0 t(~y) :F: It is easy to see from the proof that the liftingpolynomial t(~x; ~y) is nothing but a blueprint of D. Thus LP accommodates its own proofs asterms. The necessitation rule` F ) ` p :F for some proof polynomial pis a special case of Lifting. Note that here p is a blueprint of a proof of F implicitly mentionedin \` F". In particular, p is a ground polynomial, i.e. it does not contain variables.Logic of Proofs may be regarded as an explicit version of the modal logic S4. Not onlythe forgetful projection of every theorem of LP is provable in S4, but every theorem F of S4admits an instantiation of the modalities by proof polynomials such that the resulting formulaF r is derivable in LP (cf. [4], [7]). The following examples show how the realization of S4 inLP works.1.5 Example. S4 ` (2A ^2B)! 2(A^B)In LP the corresponding derivation is1. c : (A!(B!A^B)), by R2,2. x :A!(c � x) :(B!A^B), from 1, by A2,3. x :A!(y :B!(c � x � y) :(A^B)), from 2, by A2 and propositional logic,4. x :A^y :B ! (c � x � y) :(A^B)), from 3, by propositional logic.1.6 Example. S4 ` (2A_2B)! 2(A_B).7



In LP the corresponding derivation is1. a : (A! A _B); b : (B ! A _B), by R2,3. x :A! (a�x) :(A_B); y :B ! (b�y) :(A_B), from 1, by A2,4. (a�x) :(A_B)! (a�x+b�y) :(A_B); (b�y) :(A_B)! (a�x+b�y) :(A_B), by A4,5. (x :A _ y :B)! (a�x+b�y):(A_B), from 3, by propositional logic.1.7 Comment. Operations \�" and \!" are present for uni-conclusion as well as multi-conclusion proof systems. In turn, \+" is an operation for multi-conclusion proof systemsonly. Indeed, by A4 we have s :F ^ t :G! (s+t) :F ^ (s+t) :G, thus s + t proves di�erentformulas. The di�erences between uni-conclusion and multi-conclusion proof systems aremostly cosmetic. Usual proof systems (Hilbert or Gentzen style) may be considered as uni-conclusion, e.g. a proof derives only the end formula (sequent) of a proof tree. On the otherhand, the same systems may be regarded as multi-conclusion by assuming that a proof derivesall formulas assigned to the nodes of the proof tree. The logic of strictly uni-conclusion proofsystems was studied in [2], [3] and in [26], where it meets a complete axiomatization (systemFLP). FLP is not compatible with any modal logic (cf. [7]). Therefore, provability as a modaloperator corresponds to multi-conclusion proof systems.No single operator \t :" in LP is a normal modality since none of them satis�es the propertyt : (P !Q) ! (t : P ! t :Q). This makes LP essentially di�erent from numerous polymodallogics, e.g. the dynamic logic of programs ([22]), where the modality is upgraded by someadditional features. In turn, in the Logic of Proofs the modality is decomposed into a familyof proof polynomials.2 Standard provability interpretation of LPThe Logic of Proofs is meant to play for a notion of proof a role similar to that played by theboolean propositional logic for the notion of statement. It is shown in [4], [7] that LP enjoysthe soundness/completeness property:LP ` F , F is true under any interpretation .Any system of proofs with a proof checker operation capable of internalizing its own proofs asterms (cf. [41]) may be in the scope of LP . In particular, any proof system for the �rst orderPeano Arithmetic PA (cf. [9], [10], [32], [42]) provides a model for LP with G�odel numbersof proofs being a instrument of internalizing proofs as terms. The soundness ()) does notnecessarily refer to the arithmetical models. However, PA is convenient for establishing thecompleteness (() of LP : given LP 6` F one can always �nd a proof system for PA along withan evaluation of variables in F which makes F false.8



Within this paper under �1 and �1 we mean the corresponding classes of arithmeticalpredicates. We will use ';  to denote arithmetical formulas, f; g; h to denote arithmeticalterms, i; j; k; l; n to denote natural numbers unless stated otherwise. We will use the lettersu; v; w; x; y; z to denote individual variables in arithmetic and hope that a reader is able todistinguish them from the proof variables. If n is a natural number, then n will denote anumeral corresponding to n, i.e. a standard arithmetical term 0000::: where 0 is a successorfunctional symbol and the number of 0's equals n. We will use the simpli�ed notation n for anumeral n when it is safe.2.1 De�nition. We assume that PA contains terms for all primitive recursive functions(cf. [42]), called primitive recursive terms. Formulas of the form f(~x) = 0 where f(~x) is aprimitive recursive term are standard primitive recursive formulas. A standard �1 formula isa formula 9x'(x; ~y) where '(x; ~y) is a standard primitive recursive formula. An arithmeticalformula ' is provably �1 if it is provably equivalent in PA to a standard �1 formula; ' isprovably �1 i� both ' and :' are provably �1.2.2 De�nition. A proof predicate is a provably �1-formula Prf (x; y) such that for everyarithmetical sentence 'PA ` ' , for some n2! Prf (n; p'q) holds:A proof predicate Prf(x,y) is normal if the following conditions are ful�lled:1) (�niteness of proofs) For every proof k the set T (k) = fl j Prf (k; l)g is �nite. Thefunction from k to the canonical number of T (k) is computable.2) (conjoinability of proofs) For any natural numbers k and l there is a natural number nsuch that T (k)[ T (l) � T (n):2.3 Comment. Every multi-conclusion normal proof predicate can be transformed into auni-conclusion one by changing from\p proves F1; : : : ; Fn" to \(p; i) proves Fi, i = 1; : : :n":In turn, every uni-conclusion proof predicate may be regarded as normal multi-conclusion byreading \p proves F1^ : : :^Fn" as \p proves each of Fi, i = 1; : : :n":9



2.4 Proposition. For every normal proof predicate Prf there are computable functionsm(x; y), a(x; y), c(x) such that for all arithmetical formulas ';  and all natural numbers k; nthe following formulas are valid:Prf (k; p'! q) ^ Prf (n; p'q)!Prf (m(k; n); p q)Prf (k; p'q)!Prf (a(k; n); p'q); Prf (n; p'q)!Prf (a(k; n); p'q)Prf (k; p'q)!Prf (c(k); pPrf (k; p'q)q).Proof. The following function can be taken as m:Given k; n put m(k; n) = �z\Prf (z; p q) for all  such that there are p'! q 2T (k) and p'q 2 T (n)" .Likewise, for a one could takeGiven k; n put a(k; n) = �z \T (k)[ T (n) � T (z)".Finally, c may be putGiven k put c(k) = �z\Prf (z; pPrf (k; p'q)q) for all p'q 2 T (k)". Such z alwaysexists. Indeed, Prf (k; p'q) are true �1 formulas for every p'q 2 T (k), thereforethey all are provable in PA. Use conjoinability to �nd a uniform proof of all ofthem.J Note, that the natural arithmetical proof predicate PROOF(x,y)\x is the code of a derivation containing a formula with the code y".is an example of a normal proof predicate.2.5 De�nition. An arithmetical interpretation � of the LP -language has the followingparameters:� a normal proof predicate Prf with the functions m(x; y), a(x; y), c(x) as in Proposition2.4,� an evaluation of propositional letters by sentences of arithmetic, and� an evaluation of proof variables and proof constants by natural numbers.10



Let � commute with boolean connectives,(t�s)� = m(t�; s�); (t+ s)� = a(t�; s�); (!t)� = c(t�);(t :F )� = Prf (t�; pF �q):Under an interpretation � a proof polynomial t becomes a natural number t�, an LP-formulaF becomes an arithmetical sentence F �. A formula (t :F )� is always provably �1. Note, thatPA (as well as any theory containing certain �nite set of arithmetical axioms, e.g. Robinson'sarithmetic) is able to derive any true �1 formula, and thus to derive a negation of any false�1 formula (cf. [32]). For a set X of LP-formulas under X� we mean the set of all F �'ssuch that F 2 X . Given a constant speci�cation CS, an arithmetical interpretation � is aCS-interpretation if all formulas from CS� are true (equivalently, are provable in PA). AnLP-formula F is valid (with respect to the arithmetical semantics) if the arithmetical formulaF � is true under all interpretations �. F is CS-valid if F � is true under all CS-interpretations�. In Section 3 we will need the de�nition of � to be extended to the language with 2. Thenwe assume that (2F )� = 9yPrf (y; pF �q).2.6 Proposition. (Arithmetical soundness of LP0)1. If LP0 ` F then F is valid.2. If LP0 ` F then PA ` F � for any interpretation �.Proof. A straightforward induction on the derivation in LP0. Let us check 2. for the axiomt : F ! F . Under an interpretation � (t :F ! F )� � Prf (t�; pF �q) ! F �. Consider twopossibilities. Either Prf (t�; pF �q) is true, in which case t� is indeed a proof of F �, thusPA ` F � and PA ` (t :F ! F )�. Otherwise Prf (t�; pF �q) is false, in which case being a false�1 formula it is refutable in PA, i.e. PA ` :Prf (t�; pF �q) and again PA ` (t :F ! F )�.J2.7 Corollary. (Arithmetical soundness of LP)1. If LP(CS) ` F then F is CS-valid.2. If LP(CS) ` F then PA ` F � for any CS-interpretation �.11



3 Functional completeness of proof polynomialsIn this section we show some sort of functional completeness for the system of proof polyno-mials in LP . This provides one more justi�cation of the choice of the basic set of operations�; !;+ on proofs and eventually of LP itself, since no closed subsystem of the set of proofpolynomials enjoies this functional completness property.Operations on proofs invariant with respect to the choice of a proof system naturally arisefrom the notion of admissible rule in a formal system, e.g. arithmetic.3.1 De�nition. Let L be a logical language (propositional, �rst order, modal, etc.) with aclass of its arithmetical interpretations such that for any interpretation � and any formula Ffrom L an arithmetical formula F � is de�ned. An admissible rule in PA over L is a �gure` C1; : : : ;` Cn (1)` Gwhere C1; : : : ; Cn; G are L-formulas such that for every interpretation �, G� is provable in PAwhenever C1�; : : : ; Cn� are. An admissible multi-rule in PA is a �gure` C11 ; : : : ;` Ck11 or : : : or ` C1n; : : : ;` Cknn` G ; (2)such that for every interpretation � G� is derivable in PA whenever for some i; 0 � i � n, all(C1i )�; : : : ; (Ckii )� are derivable in PA.Using the modality 2 to denote the provability in PA one can present and admissible rule(1) as the modal formula 2C1 ^2C2 ^ : : :^ 2Cn ! 2Gand an admissible multi-rule (2) as the modal formula_i ĵ 2Cji ! 2Gboth true in arithmetic under every interpretation. As one can see, the admissible multi-rulesrather then the admissible rules correspond the expressive power of the modal provabilitylanguage.In order to maintain a better control over the proof variables we will use the languageof the explicit modal logic LP to describe the proof arguments of the admissible multi-rules.Indeed, every admissible multi-rule may be regarded as an implicit speci�cation of a proof yof G as a function of proofs xji 's of Cji 's. 12



3.2 De�nition. Let Cji 's and G be formulas in the language of LP , An abstract operationon proofs is a formula _i ĵ xji :Cji ! 2G; (3)that is valid under all arithmetical interpretations.Since (2G)� = 9yPrf (y; pG�q), formula (3) is a straight formalization of (2) where theexistential quanti�er over proofs in (2G)� is an implicit speci�cation of a proof y of G� as afunction of xji 's.3.3 Example. Some examples of abstract operations on proofs:i) x : (F!G)^ y :F ! 2G;ii) x :F ! 2x :F ,iii) x :F^y :G! 2(F^G);iv) x :F_y :G! 2(F_G):For each of these examples there is a proof polynomial p realizing the operator 2 in such away that instantiating p inside 2 gives a formula derivable in LP :i) LP ` x : (F!G)^ y :F ! (x � y) :G;ii) LP ` x :F !!x :x :F;iii) LP ` x :F^y :G! t(x; y) :(F^G); (Example 1.5)iv) LP ` x :F_y :G! (ax+ by) :(F_G): (Example 1.6)The following theorem demonstrates that proof existence in any abstract operation onproofs can be instantiated with a speci�c proof polynomial.3.4 Theorem. For any abstract operation on proofs_i ĵ xji :Cji ! 2Gone can construct a proof polynomial p(~x) such thatLP `_i ĵ xji :Cji ! p(~x) :G:Proof. Let (2) be an abstract operation on proofs, and let us denote_i ĵ xji :Cji13



by C. Since 2G! G is valid, the formula C ! G is also valid. By the completeness theoremfor LP ([4],[7],[18]), LP ` C ! G. By Lifting Lemma 1.4 one can construct a ground proofpolynomial t such that LP ` t : (C!G). By A2, given a fresh variable yLP ` y :C ! (t � y) :G: (4)3.5 Lemma. For any formulas A;B one can construct a proof polynomial u(x; y) such thatLP ` x :A^y :B ! u(x; y) :(x :A^y :B):Proof. Indeed, LP ` x :A !!x : x :A and LP ` y :B !!y : y :B, by A3. By 1.5, one canconstruct a proof polynomial t such thatLP `!x :x :A^!y :y :B ! t(!x; !y) :(x :A^ y :B);thus LP ` x :A ^ y :B ! t(!x; !y) :(x :A^ y :B):J3.6 Lemma. For all formulas A;B there exists a proof polynomial v(x; y) such thatLP ` x :A_y :B ! v(x; y) :(x :A_y :B):Proof. Again, LP ` x :A!!x :x :A and LP ` y :B !!y :y :B, thereforeLP ` x :A_y :B !!x :x :A_!y :y :B:Consider the Constant Speci�cation consisting of two formulas a : (x :A! x :A_y :B) andb : (y :B!x :A_y :B). By A2LP `!x :x :A! (a!x) :(x :A_y :B);LP `!y :y :B ! (b!y) :(x :A_y :B):By A4, LP ` (a!x) :(x :A_y :B)_ (b!y) :(x :A_y :B)! (a!x+ b!y) :(x :A_y :B);therefore LP `!x :x :A_!y :y :B! (a!x+ b!y) :(x :A_y :B)14



and LP ` x :A_y :B ! (a!x+ b!y) :(x :A_y :B):J3.7 Lemma. One can construct a proof polynomial s(~x) such thatLP ` C ! s(~x) :C:Proof. A straightforward induction on the number of the outer conjunctions and disjunctionsin the formula C =_i ĵ xji :Cji :The base case C = x :B. Let s(x) be !x. By A3, LP ` x :B !!x :x :B, thus LP ` C!s(x) :C.There are two cases in the induction step. If C is x : A ^ y : B, then use 3.5. If C isx :A _ y :B, then use 3.6.JFrom (4), by substituting s(~x) for y, we getLP ` s(~x) :C ! (t � s(~x)) :G;and thus, from 3.7, we get the desired LP ` C ! (t � s(~x)) :G. This concludes the proof of3.4.J3.8 Comment. Whereas the realization of admissible multi-rules (2) requires all threeproof connectives �; !;+, the realization of the plain admissible rules of the form (1) does notrequire \+".3.9 Comment. Modulo to renaming of the operations �; !;+ no proper subset F of theset of all proof polynomials closed under substitution is able to realize all abstract operationson proofs in the style of Theorem 3.4. Indeed, examples 3.3(i) and 3.3(ii) specify someoperations similar to \application" and \proof checker" respectively. By 3.3(iv), there is aproof polynomial t(x; y) in F such that LP ` x :F _ y :F ! t(x; y) : (F _F ). On the otherhand, for some proof polynomial p from F LP ` p : (F_F ! F ). By 3.3(i), there should be aproof polynomial q(x; y) from F , which is the result of the \application" of p to t(x; y) suchthat LP ` t(x; y) : (F_F ) ! q(x; y) :F . Therefore LP ` x :F _ y :F ! q(x; y) :F , and thusq(x; y) is an operation in F similar to \+". 15
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