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Godel’s Legacy in Action

According to Google Scholar of April 29, 2011, the list of ten
most cited papers 1n mathematical logic published after 2000 in

Annals of Pure and Applied Logic
The Journal of Symbolic Logic
The Bulletin of Symbolic Logic
Archive for Mathematical Logic
Mathematical Logic Quarterly
Fundamenta Mathematicae

includes direct descendants of two Godel’s papers, and these
papers are:




Godel’s Legacy in Action

Eine Interpretation des intuitionistischen Aussagenkalkuls.
Ergebnisse Math. Kollog., 14: 39-40, 1933.

Uber eine bisher noch nicht beniitztwe Erweiterung des finiten
Standpunktes, Dialectica, 12: 280-287, 1938.

The latter has been already covered beautitully in Ulrich
Kohlenbach’s talk yesterday. So, we will concentrate on the
former.




BHK semantics

The mtended semantics of mtuitionistic logic 1s the semantics of proofs,

also known as Brouwer-Heyting-Kolmogorov (BHK) semantics.

a proof of A A B consists of a prooft of A and a proof of B,

a proof of AV B 1s given by presenting either a proof of A or a proof ot

b,

a proof of A — B 1s a construction which, given a proof of A, returns a

proof of B,
a proof of Yz A(x) is a function converting ¢ into a proof of A(c),

a proof of dxA(x) is a pair (¢,d) where d is a proof of A(c).
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a proof of AV B 1s given by presenting either a proof of A or a proof ot

B,

a proof of A — B 1s a construction which, given a proof of A, returns a
proof of B,

a proof of Yz A(x) is a function converting ¢ into a proof of A(c),

a proof of dxA(x) is a pair (¢,d) where d is a proof of A(c).

Brouwer, Heyting: intuitionistic foundations

Kolmogorov: classical proofs (problem solutions) to interpret
intuitionistic logic

Godel (1933): classical provability to interpret intuitionistic
logic




Godel’s embedding

In 1933 Godel embedded IPC into modal logic S4. viewed as a modal
logic for classical provability, imn a way that respects the mformal provability
reading of S4:

IPCH F aff S4+ tr(F),

where tr(F') is obtained from F' by prefixing each subformula of F' with O.
When parsing Godel’s translation tr(F') of some formula F', we encounter a
provability modality before each subformula, which forces us to read said sub-
formula as provable rather then true. Therefore, Godel’s translation reflects
the fundamental imntuitionistic paradigm that mmtuitionistic truth 1s provabil-
1ty. Godel's and Kolmogorov's approach views mtuitionstic truth as classical
provability thus making this version of BHK a non-circular semantics for in-
tuitiomistic logic. A similar position was taken by P.S. Novikov m his book
“Constructive mathematical logic from the viewpoint of the classical one” (in
Russian).




Logic of Proots as BHK

At that stage, the problem of finding a BHK-type semantics of proot for
IPC was reduced to developing such a semantics for S4. The next step was
taken 1n the propositional Logic of Proofs LP with new atoms #:F' for

t 1s a proof of F

was Introduced. The Realization Theorem demonstrated that each S4 theo-
rem conceals an explicit statement about proofs, e.g..

OF —0OG

reads as

wF —t(u)d

1.e., if u is a proof of F', then t(u) is a proof of GG, for an appropriate proot
term f(u). The Realization Theorem allows for the extension of this kind of
explicit reading of modalities to all theorems of S4., so 54 has a semantics of
LP proofs as anticipated by Godel. Since proof terms mn LP can be naturally
mterpreted as mathematical proofs, e.g.. in Peano Arithmetic PA, S4 and [PC
received an exact provability semantics consistent with BHK-requirements.




L.essons to learn from LP

Proofs are represented in LP by proof terms constructed from proof vari-
ables and proof constants by means of functional symbols for elementary
computable operations on proofs, binary -, +, and unary !. The formulas of
LP are the usual propositional formulas and those of the form #:F" where ¢ 1s
a proof term and F' 1s a formula. The operations of LP are specified by the
following schemas:

t(A— B)—(s:A— (t-s):B) application
tA—(t+s)A, sA—(t+s)A choice
tA—ttA proof checker.

LP 1s axiomatized over the classical propositional calculus by the above
schemas, the principle

tA— A reflexivity
and the axiom necessitation rule, which allows for the specification of proot
constants as proofs of the concrete axioms

— A, where ¢ 1s an axiom constant. A 1s an axiom of LP.




L.essons to learn from LP

The intended semantics for LP 1s provided by proof predicates in Peano
Arithmetic PA. The proof terms of the LP-language are interpreted by codes
of arithmetical derivations. Operations -, +. and unary ! become total re-
cursive functions on such codes. Formulas of LP are interpreted by closed
arithmetical formulas; and #:F 1s interpreted by an arithmetical proot predi-
cate in PA. LP 1s complete with respect to such provability semantics.

The following Realization Theorem shows that LP 1s an exact counterpart
of Godel’s provability logic S4.

A modal formula F' is provable in S4 iff there exists an assignment
(called a “realization”) of proof terms to all occurrences of O in F
such that the resulting formula is provable in LP.

The proof of the Realization Theorem treats O 1n the style of Skolem as
the existential quantifier on proofs. Negative occurrences of O's are assumed
to hide universal quantifiers and hence are realized by proof variables. and
positive occurrences of O's are realized as existential quantifiers, 1.e.. by proof
terms depending on these variables.

The Realization Theorem provides S4. and therefore |[PC, with the exact
BHK-stvle provability semantics. thus completing Godel’'s project of 1933.




Kleene, Martin-Lof

Kleene realizability disclosed a fundamental computational
content of intuitionistic derivations which 1s however quite
different from the provability semantics.

Martin-Lof: comprehensive computational semantics of
intuitionistic derivations - not semantics of proofs...
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BHK: proofts vs. programs

Kleene realizers are programs rather then proofs. The predicate
r realizes F 1s not decidable whereas p proves F 1s decidable.

Realizability logic 1s different from the logic of proot and from
IPC.

Computational semantics does not fit to the original BHK; the
well-known disjunction clause for realizability:

a proof of P v Q is a pair <a,b> where a is 0 and b is a proof of
P, orais I and b is a proof of O

1s a doctored version of the original BHK clause.

Kleene 1n 1945 did not mention BHK and later denied any
connection of his realizability with BHK interpretation.
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Proof-based BHK

Proof-based BHK relates logic to epistemology. The celebrated
account of

Knowledge as Justified True Belief
commonly attributed to Plato, has been a subject a broad
discussion 1n epistemology. The standard epistemic modal logic
has represented the True Belief components of Plato's analysis.
However, the notion of justification, which has been an essential
component of epistemic studies, was conspicuously absent in the
mathematical models of knowledge within the epistemic logic
framework.

Logic of Proofs and its successor, Justification Logic, supply the
missing third component of Plato’s characterization.
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Quantification and LP

The arithmetical provability semantics for the Logic of Proofs LP, naturally
cgeneralizes to a first-order version with conventional quantifiers, and to a
version with quantifiers over proofs. In both cases, axiomatizability questions
were answered negatively.

The first-order logic of proofs is not recursively enumerable (Arte-
mov & Yavorskaya, 2001. The logic of proofs with quantifiers over
proofs is not recursively enumerable (Yavorsky 2001).

Earlier this yvear, Artemov & Yavorskayva found the first-order logic of
proofs FOLP capable of realizing first-order modal logic FOS4 and. there-
fore, the first-order intuitionistic logic HPC. Two kinds of proof semantics
for FOLP have been offered: parametric semantics. in which proof objects
are 1nterpreted as derivations with parameters, and generic semantics with
proof terms mterpreted as provably computable functions from parameters
to formal derivations. Both provide semantics of proofs for first-order S4 and
a first-order Brouwer-Heyting-Kolmogorov-style semantics for HPC.

FOS4 may be viewed as a general purpose first-order justification logic; 1t
opens the door to a general theory of first-order justification.
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First-order LP: format

In the language FOLP. the proof predicate 1s represented by formulas of
the form
t:x A

where X 1s the set of individual variables that are considered global param-
eters. Variables from X and only them are free in t:xA. All occurrences
of variables from X that are free 1n A are also free 1in t:x A. All other free
variables of A are considered local and hence bound m t:x A.

Proots are represented by proof terms which do not contain mdividual
variables. An arithmetical interpretation *. commutes with the Boolean con-
nectives and quantifiers and

(txF)* = Prof (t"(X), F*(X)),

1.e., (tx F')" 1s evaluated by the natural arithmetical formula asserting that ¢
1s a proof of F' with global variables X.
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FOLP 1s axiomatized by the following schemas. Here A, B are formulas, s.
t are terms. X 1s a set of individual variables, and 7 1s an individual variable.

Al
A2
A3
Bl
B2
B3
B4
B5

First-order LP: axioms

classical axioms of first-order logic
txyA — t:xA, vy i1s not free m A
txA— tix,A

txyA— A
sx(A—B)NtxA—(s-t):xB
txA—(t+s)xA, sxyA—(t+s)xA
txA—lt:xt:x A

txA—0U, (1) xVzA 2 ¢ X

FOLP has the following inference rules:

R1
R2
R3

-AA—-B — B Modus Ponens
- A — FVzA generalization
— c:A, where A 1s an axiom. ¢ 1s a proof constant

ariom necessitation.
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First-order LP: example

Deriving an explicit converse Barcan Formula OvrA — YrOA.

o o

. VA — A - logical axiom:;

c:(VrA — A) - axiom necessitation:

Cyz} (VA — A) - from 2, by axiom A3;

Cip}(VIA — A) — (wyp) VoA — (c-u)iyyA) - axiom B2
Uy VT A — (cu)yp A - from 3, 4, by Modus Ponens;
wVrA — wyVrA - by axiom A3;

uNVrA — (c-u)ym A - from 5, 6;

. VrluVrA — (c--u.):{m}A] - from 7, by generalization;
. uVTA — Vr(c-u)y,y A - since x 1s not free in the antecedent.
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FOS4 = projection of FOLP

Corollary 1 FOS4 s the forgetful projection of FOLP.

Corollary 2 F' is derwable in HPC if and only if its Gédel translation is
realizable in FOLP.

Example 1 Consider formula
—VzA(z) — dr—A(z) where A(z) is atomic. (1)

T'his 1s not derivable 1n imtutiomistic first-order logic HPC. Its Godel transla-
tion (in an equivalent simplified form (-)°, cf. [18], Section 9.2.1) 1s

O-0vVzA(r) — JrO-0A(z). (2)

By Corollary 2, modal formula (2) is not realizable in FOLP.
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Example

Consider mtuitionistic theorem
JrA(x)— —Vr—A(z) (where A(x) is atomic).
Its stmplified Godel translation 1s
Odz0A(z) — -OVr—-OA(z),

which 1s provable mm FOS4. By the Realization Theorem. there 1s 1ts real-
1zation provable in FOLP. We leave 1t as an exercise to derive in FOLP the
tollowing realization

w:3rvi A(r) — ~wVr-via A(r).

[t 1s easy to see that with F' = Vz—w: 3 A(z), the latter formula states
w:—F'— —w:F which 1s obviously provable in FOLP.
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Example: Barcan formula

Provability semantics: reflexivity is a major problem, e.g., Proof (z, L)— L
cannot be provable, since then Yz |—Proof (z, 1 )| would be provable, but the
latter 1s a consistency formula. So a special theory of how to mterpret proof
terms t 1n t:x F was developed.

The principal example 1s the Barcan formula
VrOA—-0OVz A,

which 1s not a provability tautology: take A to be = Proof (z, L).

We offer a provability semantics for FOLP which does exactly this.
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Conclusions

On the theoretical side, FOLP answers a cluster of long standing foundational
questions. e.g., a BHIK semantics for first-order imtuitionistic logic. a prov-
ability semantics for first-order S4, a general logic of proofs and propositions.

In addition, FOLP may be viewed as a general purpose justification logic:
1t opens the door to a general theory of first-order justification i which we
anticipate a variety of FOLP-like systems equipped with appropriate epistemic

semantics.
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Thank You!




