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Why Justification Logic

You may say, “I know that Abraham Lincoln was a tall man.” In
turn you may be asked how you know. You would almost
certainly not reply semantically, Hintikka-style, that Abraham
Lincoln was tall 1n all situations compatible with your

knowledge. Instead you would more

likely say, “I read about

Abraham Lincoln's height in several books, and I have seen

29

photographs of him next to other people.

One certifies knowledge by providing

a reason, a justification.

Hintikka semantics captures knowledge as true belief.
Justification logics supply the missing third component of Plato's

characterization of knowledge as just

ified true belief.




Why Justification Logic

A paradigmatic illustration of the logical omniscience problem is
a mathematician who knows the axioms of Peano Arithmetic PA
but does not know all their logical consequences, 1.e., all
theorems of PA. Normally, the mathematician 1s interested in a
specific easily formulated open problem O, say “there are
infinitely many twin primes,” about which she does not know
whether it 1s true. Awareness models offer a dubious analysis by
assuming that the mathematician is not aware of O which is plain
false: the mathematician 1s very well aware of the problem, may
be even obsessed with 1t, she just does not have a proot of it.

Awareness models’ resolution does not reach the core of the
matter: logical omniscience is a complexity issue.




What is Justification Logic

Justification logics are epistemic logics which allow knowledge and belief

modalities to be ‘unfolded’ into justification terms: mstead of LJX one writes

t: X, and reads 1t as “X 1s justified by reason . One may think of tra-
ditional modal operators as implicit modalities, and justification terms as
their explicit elaborations which supplement modal logics with finer-grained
epistemic machinery. The tamily of justification terms has structure and op-
erations. Choice of operations gives rise to different justification logics. For
all common epistemic logics their modalities can be completely unfolded 1nto
explicit justification form. In this respect Justification Logic reveals and uses
the explicit, but hidden. content of traditional Epistemic Modal Logic.

Justification logic originated as part of a successtul project to provide a
constructive semantics for mtuitionistic logic—justification terms abstracted
away all but the most basic features of mathematical proofs. Proofs are
justifications m perhaps their purest form. Subsequently justification logics
were 1ntroduced mto formal epistemology.




What is Justification Logic

The modal approach to the logic of knowledge 1s, 1n a sense, built around
the universal quantifier: X 1s known 1n a situation if X 1s true m all sitnations
indistiguishable from that one. Justifications., on the other hand, bring an
existential quantifier into the picture: X 1s known 1 a situation it there exists
a justification for X in that situation. This universal /existential dichotomy is
a familiar one to logicians—1in formal logics there exists a proof for a formula
X 1f and only 1f X 1s true mm all models for the logic. One thinks of models as

inherently non-constructive, and proofs as constructive things. One will not
oo far wrong i thinking of justifications in general as much like mathematical
proofs. Indeed, the first justification logic was explicitly designed to capture
mathematical proofs m arithmetic.




What is Justification Logic

In Justification Logic, i addition to the category of formulas, there 1s a sec-
ond category of justifications. Justifications are formal terms, built up from
constants and variables using various operation symbols. Constants represent
justifications for commonly accepted truths—typically axioms. Variables de-
note unspecified justifications. If £ 1s a justification term and X 1s a formula,
t: X 1s a formula, and 1s intended to be read

t 1s a justification for X.

One operation, common to all justification logics, 1s application, written like
multiplication. The 1dea 1s, 1f s 1s a justification for A — B and ¢ 1s a
justification for A, then [s - t] is a justification for B. That is, the validity of
the following 1s generally assumed

s(A— B)— (tA—|[s-t]:B). (1)

T'his 1s the explicit version of the usual distributivity of knowledge operators,
and modal operators generally, across mmplication

O0(A—B)— (0OA—0OB). (2)




Red Barn example

The distinction between (1) and (2) can be exploited in a discussion of the

paradigmatic Red Barn Example of Goldman and Kripke; here 1s a simplified
version of the story taken from (Dretske 2005).

Suppose I am driving through a neighborhood in which, unbeknownst
to me, papier-maché barns are scattered, and [ see that the object in
front of me is a barn. Because I have barn-before-me percepts, I be-
lzeve that the object in front of me i1s a barn. Our intuitions suggest
that I fail to know barn. But now suppose that the neighborhood has
no fake red barns, and I also notice that the object in front of me is
red, so I know a red barn is there. This juxtaposition, being a red

barn, which I know, entails there being a barn, which I do not, *is
an embarrassment.”




Red Barn example

In the first formalization of the Red Barn Example, logical derivation will
be performed 1n a basic modal logic 1n which O 1s interpreted as the ‘beliet’
modality. Then some of the occurrences of O will be externally interpreted
as ‘knowledge’ according to the problem’s description. Let B be the sentence
‘the object 1n front of me 1s a barn.” and let R be the sentence ‘the object
front of me 1s red.’

1. OB, ‘I believe that the object 1n front of me 1s a barn’;
2. O(BAR), ‘I believe that the object in front of me is a red barn.’

At the metalevel, 2 1s actually knowledge, whereas by the problem description,
1 1s not knowledge.

3. O(BANR— B), a knowledge assertion of a logical axiom.

Within this formalization, 1t appears that epistemic closure 1n 1ts modal form
(2) is violated: line 2, O( BAR), and line 3, O( BAR— B) are cases of knowledge
whereas OB (line 1) is not knowledge. The modal language here does not
seem to help resolving this 1ssue.




Red Barn example

Next consider this scenario in Justification Logic where #:F' 1s interpreted
as ‘1 believe F' for reason ¢t.” The list of assumptions 1s

l. w:B. ‘u 1s a reason to believe that the object i front of me 1s a barn’;

2. v:(BAR), ‘v 1s a reason to believe that the object 1s a red barn’;

3. a(BAR— B), ‘a 1s some default justification for the conjunction axiom.’

On the metalevel, 2 and 3 are cases of knowledge, whereas 1 1s belief which
1s not knowledge. Here 1s how the formal reasoning goes:

4. a(BNR— B)— (v:(BAR)— |a-v|:B), by principle (1):
5. vi( BAR)—|a-v]:B, from 3 and 4, by propositional logic:
6. |a-v|:B, from 2 and 5, by propositional logic.

[t was concluded that |a-v]: B is a case of knowledge, 1.e., ‘I know B for
reason a-v. The fact that w:5 1s not a case of knowledge does not spoil the
closure principle, since the latter claims knowledge specifically for [a-v]: B.
The justification logic formalization represents the situation fairly.




Sum of justifications

The imformation-preserving property of justifications is expressed using the
operation sum ‘4. If s:F', then whatever evidence ¢ may be, the combined
evidence s + t remains a justification for F. More properly, the operation
"+ takes justifications s and 7 and produces s + t. which 1s a justification for

everything justified by s or by t.

ssF—|s+tF and tF—[s+t:F.

As motivation, one might think of s and t as two volumes of an encyclopedia,
and s + t as the set of those two volumes. Imagine that one of the volumes,
say s, contains a sufficient justification for a proposition F'. 1.e., s:F 1s the
case. Then the larger set s + t also contains a sufficient justification for F,
s+ t|:F. In the Logic of Proofs LP, Section 1.2, ‘s + " can be interpreted as
a concatenation of proofs s and t.




Basic Justification Logic J

and jus-
tification constants a. b, c,... (with mndices 7 = 1.2.3... which are omitted
whenever 1t 1s safe) by means of the operations ‘-’ and ‘+.” More elabo-
rate logics considered below also allow additional operations on justifications.
Constants denote atomic justifications which the system does not analyze:
variables denote unspecified justifications. The Basic Logic of Justifications,
Jo 1s axiomatized by the following.

Classical Logic Classical propositional arioms and the rule Modus Ponens,
Application Axiom s:(F—G)— (t.F —|s-t]:G)
Monotonicity Axioms s:F'—|s + t|:F, s:F — |t + s|.F.

Jo 1s the logic of general (not necessarily factive) justifications for an abso-
lutely skeptical agent for whom no formula is provably justified. 1.e., Jy does
not derive t:F for any ¢t and F'. Such an agent 1s, however, capable of drawing
relative justification conclusions ot the form

it A, y:B, ..., zC hold, then t:F.




Basic Justification Logic J

One distinguishes between an assumption and a justified assumption. In
Justification Logic constants are used to represent justifications of assump-
tions 1n situations where they are not analvzed any further. Suppose 1t 1s
desired to postulate that an axiom A 1s justified for the knower. One simply
postulates e;:A for some evidence constant e; (with index 1). If, furthermore.
1t 1s desired to postulate that this new principle e;:A 1s also justified, one can
postulate eg:(e;: A) for a constant ey (with index 2). And so on. Keeping
track of mdices 1s not necessary, but 1t 1s easy and helps m decision proce-

dures (Kuznets 2008). The set of all assumptions of this kind for a given logic
1s called a Constant Specification. Here 1s the formal definition.
A Constant Specification CS for a given justification logic £ 1s a set of

formulas of the form

€ni€n_1:....€1:A (n>1),

where A 15 an axiom of £, and e1. e, ..., e, are similar constants with indices
1.2.....n. It 1s assumed that CS contains all intermediate specifications, 1.e.,
whenever e, :e, 1:...:e1:A1s1n CS, thene, ;:...:e1: A 1s 1 CS too.




Basic Justification Logic J

Logic of Justifications with given Constant Specification Let CS be

a constant specification. Jog 1s the logic J; + CS: the axioms are those

of Jy together with the members of CS.
Modus Ponens. Note that Jy 1s Jp.

and the only rule of mference 1s

Logic of Justifications J 1s the logic Jy + Axiom Internalization Rule.

The new rule states: For each axiom A

and any constants ey, eq, .. .. € -

infer ey ep_1:...:e1: A. The latter embodies the 1dea of unrestricted

Logical Awareness for J. A similar rule appeared i the Logic of Proofs

LP. and has also been anticipated in Golc
Awareness, as expressed by axiomatical

iman’s (Goldman 1967). Logical

ly appropriate Constant Speci-

fications. 1s an explicit mmcarnation of t
Logic: = F = = OF, but restricted to
with Jyog.

he Necessitation Rule in Modal
axioms. Note that J coincides




Internalization

The key feature of Justification Logic systems 1s their ability to inter-
nalize their own derivations as provable justification assertions within their
languages. This property was anticipated 1n (Godel 193%).

Theorem 1 For each ariomatically appropriate constant specification CS,
Jos enjoys Internalization:

If = F, then — p:F' for some justification term p.

Proof. Induction on derivation length. Suppose = F. If F' 1s a member of
Jo, or a member of CS| there is a constant e, (where n might be 1) such that
en:F 1s 1 CS, since CS 1s axiomatically appropriate. Then e,:F' 1s derivable.
If F'1s obtained by Modus Ponens from X — F' and X . then. by the Induction
Hypothesis, = s:(X — F') and = ¢: X for some s, t. Using the Application
Axiom, = [s-t]:F. O




Basic Justification Logic J

This example shows how to build a justification of a disjunction from
justifications of either of the disjuncts. In the usual modal language this 1s
represented by OA VvV OB—0O(AV B). Here is the corresponding result in J.
1. A= (AV B), by classical logic
. a(A—(AV B)), from 1, by Aziom Internalization

3. mmA—|a-z:(AV B), from 2, by Application and Modus Ponens
. B—(AV B), by classical logic
. b(B—(AV B)), from 4, by Aziom Internalization
- y:B—|b-yl:(AV B) from 5, by Application and Modus Ponens
cNa-z]:(AV B)—|a-z+b-yl:(AV B), by Monotonicity
byl (AV B)—la-x+b-yl:(AV B), by Monotonicity
N(wAVyB)—|a-x+b-yl:(AV B) from 3, 6, 7, 8.

The complete reading of the result of this derivation 1s

(AN y:B)—|la-z+b-yl:(AV B), given a:(A— (AV B)) and b:(B— (A V B)).




Further principles (optional)

Factivity Axiom t:F — F.
Positive Introspection Axiom t:F — t:(t:F)

L]
&

Negative Introspection Axiom —t:F'— 7t:(—t:F).

JT = J + Factivity.

J4= J + Positive Introspection,

LP = JT 4 Positive Introspection.

J45= J4 + Negative Introspection,
JD45= J45 + —t: |,
JT45 = J45 + Factivity.




Evidence Function

A Fitting model 1s a structure M = (G, R,£,V). Of this, (G, R,V) 1s a
standard K model. The new 1tem 1s £, an evidence function, which originated
in (Mkrtychev 1997). This maps justification terms and formulas to sets of
worlds. The intuitive idea is, if the possible world I' is in £(¢, X), then t is
relevant or admissible evidence for X at world I'. One should not think of
relevant evidence as conclusive. Rather. think of 1t as more hke evidence that

can be admitted 1 a court of law: this testimony, this document 1s something
a Jury should examine, something that 1s pertinent, but something whose
truth-determining status 1s vet to be considered.

Given a model M = (G, R, &,V), truth of formula X at possible world I'

1s required to meet the standard Boolean conditions. The key 1tem 1s

['IF (X)) of and only +f ' € £(t, X) and, for every A € G, Al X.

Informally, X 1s true at a world 1f X 1s believable at that world 1n the usual
sense of epistemic logic, and ¢ 1s relevant evidence for X at that world.




Singleton models

Mkrtychev models were developed considerably before Fitting models, (Mkr-
tychev 1997). Today they can most simply be thought of as Fitting models
with a single world. The completeness proof for J and the other justifica-
tion logics mentioned above can easily be modified to establish completeness
with respect to Mkrtychev models, though of course this was not the original
arcument. What completeness with respect to Mkrtvchev models tells us 1s
that information about the possible world structure of Fitting models can
be completely encoded by the admissible evidence tunction, at least for the
logics discussed so far. Mkrtychev used these models to establish decidability
of LP, and others have made fundamental use of them in setting complexity
bounds for justification logics, as well as for showing conservativity results
for justification logics of belief, (Kuznets 2000; Kuznets 2008; Milnikel 2007;
Milnikel 2009). Complexity results have further been used to address the
problem of logical omniscience, (Artemov and Kuznets 2009).




Forgetful projection

Forgettul projection replaces each occurrence of ¢/ by OF and hence converts
a Justification Logic sentence S to a corresponding Modal Logic sentence S°.

Always maps valid formulas of Justification Logic (e.g., axioms of J) to
valid formulas of a corresponding Epistemic Logic (K in this case). The
converse also holds: any valid formula of Epistemic Logic 1s the forgetful
projection of some valid formula of Justification Logic. This follows from the
Correspondence Theorem:

Jo =K.

T'his correspondence holds for other pairs of Justification and Epistemic sys-
tems, for mstance J4 and K4, or LP and S4, and manv others. In such
extended form, the Correspondence Theorem shows that major modal logics
such as K, T, K4, 54, K45, S5 and some others have exact Justification Logic
counterparts.




Realization Theorem

The Correspondence Theorem 1s based on the Realization Theorem:

There is an algorithm which, for each modal formula F derivable
in K, assigns evidence terms to each occurrence of modality in F' in
such a way that the resulting formula F" 1s derivable in J. Moreover,
the realization assigns evidence variables to the negative occurrences
of modal operators in F, thus respecting the existential reading of

epistemic modality.
Known realization algorithms which recover evidence terms 1n modal theo-
rems use cut-free derivations in the corresponding modal logics (K. T, K4,
S4). Alternatively, the Realization Theorem can be established semantically

(K45, S5).




Realization Theorem

It would be a mistake to draw the conclusion that any modal logic has a
reasonable Justification Logic counterpart. For example the logic of formal
provabilitv, GL, contains the Léb Principle

D(DF%F}%DF?

which does not seem to have an epistemically acceptable explicit version.
Consider, for example, the case where F' 1s the propositional constant L
for false. If an analogue of the Realization Theorem would cover the Lob
Principle there would be justification terms s and ¢ such that z:(s: L — 1) —
t: L. But this 1s mtuitively false for factive justification. Indeed. s: 1 — 1 1s
an mstance of the Factivity Axiom. Apply Axiom Internalization to obtain
c:(s:L — 1) for some constant c. This choice of ¢ makes the antecedent of
c(s: L — 1 )—# L intuitively true and the conclusion false (to be precise, one
must substitute ¢ for z everywhere 1n s and t).




Justified Belief and Knowledge

Justification Logic provides a new semantics for the major modal logics.
In addition to the traditional Kripke-style ‘universal’ reading of OF as F

holds wn all possible situations, there 1s now a rigorous ‘existential’ semantics
for OF that can be read as there is a witness (proof, justification) for F'.

The Correspondence Theorem tells us that justifications are compatible
with Hintikka-stvle syvstems and hence can be sately mcorporated mto the
foundation for Epistemic Modal Logic. This new ‘justification’ component
was, In fact, an old and central notion which has been widely discussed by
mainstream epistemologists but which remained out of the scope of classical
epistemic logic.

Justification semantics plays a similar role in Modal Logic to that played
by Kleene realizability i Intuitionistic Logic. It took Kleene realizability to
reveal the computational semantics of Intuitionistic Logic and the Logic of
Proofs to provide the semantics of proofs for Intuitionistic and Modal Logic.




Knowledge + justifications

The most common joint logic of explicit and implicit knowledge 1s S4LP (Arte-
mov and Nogina 2005). The language of S4LP is like that of LP, but with an
implicit knowledge operator added, written either K or [J. The axiomatics
1s like that of LP, combined with that of S4 for the mmplicit operator, to-
cether with a connecting axiom, #: X — X, anvthing that has an explicit

justification 1s knowable.

Semantically, Fitting models for LP need no modification, since they al-
ready have all the machinery of Hintikka/Kripke models. While the logic
S4LP seems quite natural, a Realization Theorem has been problematic for
1t: no such theorem can be proved 1if one 1nsists on what are called normal
realizations. Realization of implicit knowledge modalities in S4LP by explicit
justifications which would respect the epistemic structure remains a major
challenge 1n this area.




Tracking evidence

Justification Logic can analyize different justifications for the same fact.
Consider a well-known example from (Russell 1912).

If a man believes that the late Prime Minister’s last name began
with a ‘B,’ he believes what is true, since the late Prime Minister
was Sir Henry Campbell Bannerman(which was true back in 1912).
But if he believes that Mr. Balfour was the late Prime Minister
(which was false in 1912), he will still believe that the late Prime
Minaster’s last name began with a ‘B, yet this belief, though true,
would not be thought to constitute knowledge.

Here one has to deal with two justifications for a true statement. one of

which 1s correct and one of which 1s not. Let B be a sentence (propositional
atom), w be a designated justification variable for the wrong reason for B

and r a designated justification variable for the right (hence factive) reason
for B. Then, Russell's example prompts the following set of assumptions:

R ={wB, mB, mrB—B} .




Tracking evidence

R =A{w:B, mB, mrB— B} .

Somewhat counter to intuition, one can deduce factivity of w from R:

l. mB - an assumption

2. mB— B - an assumption

3. B - from 1 and 2, by Modus Ponens

4. B—(w:B— B) - a propositional axiom

5, wB— B - from 8 and 4, by Modus Ponens.
However, this derivation utilizes the fact that r 1s a factive justification for
B to conclude w:B — B. which constitutes a case of ‘induced factivity’ for
w:B. The question 1s. how can one distinguish the ‘real” tactivity of r:B from
the ‘mmduced factivity’ of w:B7 Some sort of truth-tracking 1s needed here,
and Justification Logic 1s an appropriate tool. The natural approach 1s to
consider the set of assumptions without 5. 1.e..

S ={w:B, mB— B}

and establish that factivity of w, 1.e., w:B— B 1s not derivable from &. This
1s easy to establish by choosing an appropriate model.




Moore sentences

Let us consider an example which was suggested by the well-known Moore’s

paradox:
It will rain but I don’t believe that it will.

If R stands for it will rain. then a modal formalization 1s M = R A —-OR.
The Moore sentence M 1s easily satishiable, hence consistent, e.g.., whenever
the weather forecast wrongly shows "no raimn.” However, 1t 1s 1impossible to
know Moore’s sentence because

~OM = —O(R A —~OR)

holds 1n anyv modal logic containing T. Here 1s a derivation.
l. (RAN-OR)— R, logical ariom
. O((RAN—-OR)— R), Necessitation
. O(RA-OR)—OR, from 2, by Distribution
. O(RAN-OR)— (R N —-OR), Factivity, in T
. O(RN-OR)—-0OR, from 4, in Boolean logic
. O(RA-OR), from 3 and 5, in Boolean logic




Self-referential justifications

Furthermore, here 1s how this derivation 1s realized in LP.
1. (RA—[c-x|:R)— R, logical aziom
c:((R A —e-x|:R)— R), Constant Specification
(RN —le-x|:R)—|c-x|:R, from 2, by Application
(RN —=[e-x]:R)— (R A =|c-z|:R), Factivity
. (RN —le-z|:R)— —le-x|:R, from 4, by Boolean logic
6. —xz:(R A =le-x|:R), from 3 and 5, in Boolean logic
Note that Constant Specification 1n line 2 1s self-referential. 1.e., contains a

-

T
x

justification assertion c:A(c)

Self-referentiality of justifications 1s a new phenomenon which 1s not present
in the conventional modal language. In addition to being intriguing epistemic
objects, such self-referential assertions provide a special challenge from the
semantical viewpomt. The question of whether or not modal logics can be
realized without using self-referential justifications was a major open question
in this area.




Self-referentiality in general

The principal result by Kuznets states that self-referentiality of justifica-
tions 1s unavoidable 1n realization of S4 i LP. The current state of things 1s
oven by the following theorem due to Kuznets:

Self-referentiality can be avoided in realizations of modal logics K
and D. Self-referentiality cannot be avoided in realizations of modal

logics T, K4, D4 and S4.

This theorem establishes that a system of justification terms for S4 will
necessarily be self-referential. This creates a serious, though not directly
visible, constraint on provability semantics. In the Logic of Proofs LP 1t was
dealt with by a non-trivial fixed-pomt construction.




Logical Omniscience Test

The logical omniscience feature assumes that an epistemic agent knows all
logical consequences of his assumptions. Justification Logic offers a general
theoretical framework that views logical omniscience as a computational com-
plexity problem. Artemov & Kuznets suggested the following approach: we
assume that the knowledge of an agent 1s represented by an epistemic logi-
cal system E: we call such an agent not logically omniscient 1f for anv valid
knowledge assertion A of type F' is known, a proot of F' in E can be found in
polynomial time 1n the size of A. A.& K. showed that agents represented by
major modal logics of knowledge and belief are logically omniscient whereas
agents represented by justification logic systems are not logically omniscient
with respect to t is a justification for F'.




Justified Common Knowledge

Consider n agents with a commonly trusted evidence system. Its forget-
tul projection defines justified common knowledge modality J stronger than

common knowledge: J.X states that agents share sufficient evidence for X.

The common knowledge modality 1s represented by the condition
CX = XANEXAE’XA...ANE'XA...
whereas for the justified common knowledge operator J one has
JX = XANEXAE’XA...AE"XA...

Justified common knowledge has the same modal principles as McCarthy's
common knowledge. David Lewis’ version of common knowledge 1s also more
close to justified common knowledge. A public announcement of X after
which X holds at all states, not only at reachable states, yields JX, not CX.

The axiomatic description of J 1s significantly simpler than that of C.
Moreover, 1n the standard epistemic scenarios, J 1s conservative with respect
to C and hence provides a highter alternative to the latter.




Quantification and LP

The arithmetical provability semantics for the Logic of Proofs LP, naturally
cgeneralizes to a first-order version with conventional quantifiers, and to a
version with quantifiers over proofs. In both cases, axiomatizability questions
were answered negatively.

The first-order logic of proofs is not recursively enumerable (Arte-
mov & Yavorskaya, 2001. The logic of proofs with quantifiers over
proofs is not recursively enumerable (Yavorsky 2001).

Earlier this yvear, Artemov & Yavorskayva found the first-order logic of
proofs FOLP capable of realizing first-order modal logic FOS4 and. there-
fore, the first-order intuitionistic logic HPC. Two kinds of proof semantics
for FOLP have been offered: parametric semantics. in which proof objects
are 1nterpreted as derivations with parameters, and generic semantics with
proof terms mterpreted as provably computable functions from parameters
to formal derivations. Both provide semantics of proofs for first-order S4 and
a first-order Brouwer-Heyting-Kolmogorov-style semantics for HPC.

FOS4 may be viewed as a general purpose first-order justification logic; 1t
opens the door to a general theory of first-order justification.




First-order LP: format

In the language FOLP. the proof predicate 1s represented by formulas of
the form
t:x A

where X 1s the set of individual variables that are considered global param-
eters. Variables from X and only them are free in t:xA. All occurrences
of variables from X that are free 1n A are also free 1in t:x A. All other free
variables of A are considered local and hence bound m t:x A.

Proots are represented by proof terms which do not contain mdividual
variables. An arithmetical interpretation *. commutes with the Boolean con-
nectives and quantifiers and

(txF)* = Prof (t"(X), F*(X)),

1.e., (tx F')" 1s evaluated by the natural arithmetical formula asserting that ¢
1s a proof of F' with global variables X.




First-order LP: axioms

FOLP 1s axiomatized by the following schemas. Here A, B are formulas, s.

t are terms. X 1s a set of individual variables, and 7 1s an individual variable.

Al
A2
A3
Bl
B2
B3
B4
B5

classical axioms of first-order logic
txyA — t:xA, vy i1s not free m A
txA— tix,A

txyA— A
sx(A—B)NtxA—(s-t):xB
txA—(t+s)xA, sxyA—(t+s)xA
txA—lt:xt:x A

txA—0U, (1) xVzA 2 ¢ X

FOLP has the following inference rules:

R1
R2
R3

- AA— B — B Modus Ponens

- A — FVzA generalization

— c:A, where A 1s an axiom. ¢ 1s a proof constant
ariom necessitation.



First-order LP: realization

We derive an explicit version of the converse Barcan Formula OVr A — YaxOA.

. VA — A - logical axiom:
. (VA — A) - axiom necessitation;

3. ¢y} (VA — A) - from 2, by axiom A3;
iy (VoA — A) — () VoA — (c-u)yp A) - axiom B2;
U VT A — (c-u)yn A - from 3, 4, by Modus Ponens;
. WYTA — wg VA - by axiom A3;
. uVTA — (cru)yp A - from 5, 6;

8. Vr|luvVrA — [c--u.):{m}A] - from 7, by generahzation;
. uVrA — Vr(c-u)z) A - since x 1s not free m the antecedent of 8.

Realization Theorem. If FOS4 = A, then there is a normal realization A"

such that FOLP - A",

Since HPC can be faithfully embedded in FOS4 via Godel’s transation. this
also provides HPC with a BHK-style semantics of proofs.




Conclusions

Justification Logic extends the logic of knowledge by a formal theory of justi-
fication. It 1s capable of formalizing a significant portion of reasoning about
justifications, e.g.. Kripke, Russell, and Gettier examples. This formalization
has been used for the resolution of paradoxes. verification. hidden assumption
analysis, and eliminating redundancies.

Among other known applications of Justification Logic, so far there are

e intended provability semantics for Godel’s provability logic $4 and FOS4,
a formalization of Brouwer-Heyting-Kolmogorov semantics;

e a rigorous definition of the Logical Omniscience property and a demon-
stration that evidence assertions in Justification Logic are not logically
omniscient:

e a more general approach to common knowledge;:

e evidence tracking framework (in progress).




Thank You!



