Kurt Godel Research Center

First-Order Logic of Proofs

Sergel Artemov & Tatiana Yavorskaya (Sidon)

Vienna, April 27,201 |

BHK semantics

The intended semantics of intuitionistic logic 1s the semantics of proofs.

also known as Brouwer-Heyting-Kolmogorov (BHK) semantics.

a prootf of A A B consists of a proot of A and a proof of B.

a proof of AV B 1s given by presenting either a proot of A or a proot of

B,

a proof of A — B 1s a construction which, given a proof of A. returns a

proof of B,
a proof of Yz A(x) is a function converting ¢ into a proof of A(c),

a proof of drA(x) is a pair (¢, d) where d is a proof of A(c).

Kolmogorov (1932), and Godel (1933,1938), viewed BHK-proofs as proofs in

classical mathematics. Godel discussed the possibility of builidng a classical

logic of proofs. Kolmogorov intended “to construct a unified logical apparatus

dealing with objects of two types — propositions and problems.”

Godel’s embedding

In 1933 Godel embedded IPC into modal logic S4, viewed as a modal
logic for classical provability, in a way that respects the informal provability
reading of S4:

IPCHF iff S4F tr(F),

where tr(F) is obtained from F' by prefixing each subformula of F' with O.
When parsing Godel’s translation tr(F') of some formula F', we encounter a
provability modality betore each subformula, which forces us to read said sub-
formula as provable rather then true. Therefore, Godel’s translation reflects
the fundamental intuitionistic paradigm that intuitionistic truth is provabil-
1ity. Godel’s and Kolmogorov's approach views mtuitionstic truth as classical
provability thus making this version of BHK a non-circular semantics for -
tultionistic logic. A similar position was taken by P.S. Novikov m his book
“Constructive mathematical logic from the viewpoint of the classical one” (in
Russian).

Logic of Proots as BHK

At that stage, the problem of finding a BHK-type semantics of proot for
IPC was reduced to developing such a semantics for S4. The next step was
taken 1n the propositional Logic of Proofs LP with new atoms #:F' for

t 1s a proof of F

was Introduced. The Realization Theorem demonstrated that each S4 theo-
rem conceals an explicit statement about proofs, e.g..

OF —0OG

reads as

wF —t(u)d

1.e., if u is a proof of F', then t(u) is a proof of GG, for an appropriate proot
term f(u). The Realization Theorem allows for the extension of this kind of
explicit reading of modalities to all theorems of S4., so 54 has a semantics of
LP proofs as anticipated by Godel. Since proof terms mn LP can be naturally
mterpreted as mathematical proofs, e.g.. in Peano Arithmetic PA, S4 and [PC
received an exact provability semantics consistent with BHK-requirements.

L.essons to learn from LP

Proofs are represented in LP by proof terms constructed from proof vari-
ables and proof constants by means of functional symbols for elementary
computable operations on proofs, binary -, +, and unary !. The formulas of
LP are the usual propositional formulas and those of the form #:F" where ¢ 1s
a proof term and F' 1s a formula. The operations of LP are specified by the
following schemas:

t(A— B)—(s:A— (t-s):B) application
tA—(t+s)A, sA—(t+s)A choice
tA—ttA proof checker.

LP 1s axiomatized over the classical propositional calculus by the above
schemas, the principle

tA— A reflexivity
and the axiom necessitation rule, which allows for the specification of proot
constants as proofs of the concrete axioms

— A, where ¢ 1s an axiom constant. A 1s an axiom of LP.

L.essons to learn from LP

The intended semantics for LP 1s provided by proof predicates in Peano
Arithmetic PA. The proof terms of the LP-language are interpreted by codes
of arithmetical derivations. Operations -, +. and unary ! become total re-
cursive functions on such codes. Formulas of LP are interpreted by closed
arithmetical formulas; and #:F 1s interpreted by an arithmetical proot predi-
cate in PA. LP 1s complete with respect to such provability semantics.

The following Realization Theorem shows that LP 1s an exact counterpart
of Godel’s provability logic S4.

A modal formula F' is provable in S4 iff there exists an assignment
(called a “realization”) of proof terms to all occurrences of O in F
such that the resulting formula is provable in LP.

The proof of the Realization Theorem treats O 1n the style of Skolem as
the existential quantifier on proofs. Negative occurrences of O's are assumed
to hide universal quantifiers and hence are realized by proof variables. and
positive occurrences of O's are realized as existential quantifiers, 1.e.. by proof
terms depending on these variables.

The Realization Theorem provides S4. and therefore |[PC, with the exact
BHK-stvle provability semantics. thus completing Godel’'s project of 1933.

Quantification and LP

The arithmetical provability semantics for the Logic of Proofs LP, naturally
cgeneralizes to a first-order version with conventional quantifiers, and to a
version with quantifiers over proofs. In both cases, axiomatizability questions
were answered negatively.

The first-order logic of proofs is not recursively enumerable (Arte-
mov & Yavorskaya, 2001. The logic of proofs with quantifiers over
proofs is not recursively enumerable (Yavorsky 2001).

Earlier this yvear, Artemov & Yavorskayva found the first-order logic of
proofs FOLP capable of realizing first-order modal logic FOS4 and. there-
fore, the first-order intuitionistic logic HPC. Two kinds of proof semantics
for FOLP have been offered: parametric semantics. in which proof objects
are 1nterpreted as derivations with parameters, and generic semantics with
proof terms mterpreted as provably computable functions from parameters
to formal derivations. Both provide semantics of proofs for first-order S4 and
a first-order Brouwer-Heyting-Kolmogorov-style semantics for HPC.

FOS4 may be viewed as a general purpose first-order justification logic; 1t
opens the door to a general theory of first-order justification.

First-order LP: format

In the language FOLP. the proof predicate 1s represented by formulas of
the form
t:x A

where X 1s the set of individual variables that are considered global param-
eters. Variables from X and only them are free in t:xA. All occurrences
of variables from X that are free 1n A are also free 1in t:x A. All other free
variables of A are considered local and hence bound m t:x A.

Proots are represented by proof terms which do not contain mdividual
variables. An arithmetical interpretation *. commutes with the Boolean con-
nectives and quantifiers and

(txF)* = Prof (t"(X), F*(X)),

1.e., (tx F')" 1s evaluated by the natural arithmetical formula asserting that ¢
1s a proof of F' with global variables X.

First-order LP: axioms

FOLP 1s axiomatized by the following schemas. Here A, B are formulas, s.

t are terms. X 1s a set of individual variables, and 7 1s an individual variable.

Al
A2
A3
Bl
B2
B3
B4
B5

classical axioms of first-order logic
txyA — t:xA, vy i1s not free m A
txA— tix,A

txyA— A
sx(A—B)NtxA—(s-t):xB
txA—(t+s)xA, sxyA—(t+s)xA
txA—lt:xt:x A

txA—0U, (1) xVzA 2 ¢ X

FOLP has the following inference rules:

R1
R2
R3

-AA—-B — B Modus Ponens
- A — FVzA generalization
— c:A, where A 1s an axiom. ¢ 1s a proof constant

ariom necessitation.

First-order LP: example

Deriving an explicit converse Barcan Formula OVrA — VoxOA.

o

~ o o

. VA — A - logical axiom:;
. (VA — A) - axiom necessitation:

Cyz}(VrA — A) - from 2. by axiom AJ3;

Cip (VA — A) — (wypy Vo A — (c-u)iyyA) - axiom B2;
U VA — (c--u.):{iE 1A - from 3, 4, by Modus Ponens;
wvVrA — ugn VA - by axiom A3;

- uVTA — (c-u)iyy A - from 5, 6;
 Vr|luVrA — (c--u.]:{f,:}A] - from 7. by generalization;
. uVTA — Vr(cu)y, A - since x 1s not free in the antecedent.

10

Internalization

Internalization Theorem. Let pg

.pr be proof vartables, Xg. ..., X} be
sets of individual variables, and X = XqgU Xy U ... U X.. Suppose that in
FOLP

Pox, Ao - - -, PEx A E F

Pﬂixﬂﬂn-. . ~Pk1X;Ef1k —tx F.

Proof. Induction on derivation of F' from pg:x, Ao, . . ., prix, Ak

Case 4. F' follows by generalization, 1.e., F' = Vx G for some x not occurring
free 1n the set of hypotheses. In particular, x € X. By IH, s:xG for some s.
By B5, ssxG—gen, . (s):xVz G, hence gen, . (s):xVxG. Take t = gen, . (s).

In particular, given — F', there 1s a proof term 7 containing no proof or
individual variables such that + #: /. Such t can be chosen +-free.

11

Realization

Bv realization of a formula A we mean a formula A" of the language of
FOLP that 1s obtained from A by replacing all occurrences of subformulas of A
of the form OB by t:x B" for some proof terms ¢ and such that X = FVar(B).
A realization 1s normal if all negative occurrences of O are assigned proof
varliables.

We define the forgetful projection (-)” of FOLP to the first-order modal
language by mduction on an FOLP-formula. For atomic formulas. we stip-
ulate FY = F. forgetful projection commutes with Boolean connectives and

quantifiers, and for proof assertions.
(tx F)” = OVyo ... Yy F°, where {yo,....yx} = FVar(F)\ X.
Correctiness If FOLP = F', then FV is derivable in FOS4.

Realization Theorem.

If FOS4 = A, then there is a normal realization A" such that FOLP - A",

12

Realization

Proof. The proof i1s similar to that in the propositional case, with additional
care given to individual variables. We consider the Gentzen-style calculus
for FOS4 and prove that for every sequent I' = A that 1s provable in FOS4,
there exists a realization (I' = A)" such that FOLP - (A"’ — VA)". For this
purpose, we take a cut-free derivation of I' = A and construct realization for
the whole derivation.

The sequential calculus for FOS4 has the same rule as the first order logic
with additional ‘modal’ rules

OI'= A I'A= A
(RO), (LO).
O = 0A [''OA= A.

The following connection between FOS4 and i1ts Gentzen-style version

GFOS4 takes place:
GFOS4-T = A iff FOS4+ AT —\/A.

Cut-elimination holds in GFOS4: if GFOS4 ' = A. then I' = A can be

derived mm GFOS4 without using the cut-rule.

13

Realization

Lemma If GFOS4 = 1" = A, then there exists a normal realization such that
FOLP = (AT — VVA).

Proof Suppose that D 1s a cut-free derivation mm FOS4. We will construct
a realization for each sequent I' = A m D m such a way that the formula
AT"—\/ A" is provable in FOLP.

As m the propositional case, we split all occurrences of O’s 1n derivation
D mto families of related ones. Namely, two occurrences of O are related
if they occur 1n related subformulas of premises and conclusions of rules; we
extend this relationship by reflexivity and transitivity. All the rules of GFOS4
respect polarities, hence all O's 1n every family have the same polarity. So
we can speak about positive and negative famailies of O’s. If f 1s a positive
tamily, then all O’s from f are mtroduced either by weakening on the right
or by the rule (RO). If at least one O in f is introduced by (RO), then we
call f an essential family, otherwise f 1s called inessential famaly.

Step 1. Initialization. To every negative or messential positive family
J we assign a fresh proof variable ps. Replace all DA, where O 1s from f, by

prxA with X = FVar(A).

14

Realization

Suppose that f 1s an essential positive family. We enumerate the rules
(RO) which introduce O’s from the family f. Let n(f) be the total number
of such rules for the family f. For the (RO) rule number £ in a family f
where £ =1,...,n(f), we take a fresh proof variable u; called a provisional

E

variable. Finally, replace all OA from the family f by
Uy F Uy]ix A
with X = FVar(A).

After initialization 1s completed, all nodes in the resulting tree D' are
assigned formulas of the logic FOLP.

Step 2. Realization. Now we travel along derivation D’ from leaves
to root and replace all provisional variables by FOLP-terms. We retain the
notation u; for both provisional variables and terms substituted for them.
The resulting tree 1s denoted by D". By induction on the depth of a node 1n
D', we prove that after the process passes the node I' = A in D’ and replaces
1t by I = A",

1. sequent I'" = A" 1s derivable in FOLP:

2. for every subformula B occurring in I', A, we have FVar(B") = FVar(B).

15

Realization

The only case in which we alter realization i1s in rule (RO). Suppose that
['= A is obtained by rule (RO):

The symbol O mtroduced by this rule belongs to an essential positive family
f. Let this rule have the number ¢ among rules (RO) which introduce O’s
from this family f, and n = n(f).

Currently m D", the node corresponding to the premise of this rule 1s
assigned a sequent q1:x, B1,....qr:x, By = B which, by the Induction Hy-
pothesis, 1s provable in FOLP. The node corresponding to the conclusion 1s
assigned a sequent

where all g; are proof variables, all u; are either provisional variables or terms,
u; 1s a provisional variable, and X = FVar(B).

16

Realization

Bv Internalization Lemma, 1t follows that there exists a term ¢ such that

FOLP derives

where ¥ = Xj U Xo U ... U X,. Usming axiom A2, we remove from Y all
variables that are not in FVar(B) and obtain Y =Y N FVar(B). Then, by
A3, add to Y all free variables of B that were not vet there and obtain X.
The resulting sequent

qx,B1. ..., qex,Br = |ur + ... Fuiy Ht+ui .. ug]ix B

Replace provisional variable u; by ¢ everywhere mn D". By the Substitution
Lemma, this substitution respects provability in FOLP.

17

FOS4 = projection of FOLP

Corollary 1 FOS4 s the forgetful projection of FOLP.

Corollary 2 F' is derwable in HPC if and only if its Gédel translation is
realizable in FOLP.

Example 1 Consider formula
—VzA(z) — dr—A(z) where A(z) is atomic. (1)

T'his 1s not derivable 1n imtutiomistic first-order logic HPC. Its Godel transla-
tion (in an equivalent simplified form (-)°, cf. [18], Section 9.2.1) 1s

O-0vVzA(r) — JrO-0A(z). (2)

By Corollary 2, modal formula (2) is not realizable in FOLP.

18

Open variables in derivations

The role of X 1n t:xF 1s to provide a substitutional access to derivation ¢
and formula F' for all variables from X, in a sense, to keep variables in X
“olobal” m t:x F'. We have to define “free variables of a derivation™:

if a dervation D(x) with a “free variable x” 1s a proof of a formula

F(x), then for each n, D(n) is a derivation of F(n).

Example. Let F(z) be a logical axiom with a free variable z. Consider a
derivation

F(x) - axiom;

VxF(x) - generalization:

F(z)— (VYzF(x)— F(z) ANVxF(x)) - conjunction axiom:;

VeF(x)— F(z) ANV F(z) - Modus Ponens;

F(xz) ANVzF(z) - Modus Ponens.
(Question: 1s the very first occurrence of r free in this derivation?
Answer 1: z 1s free, since 1t 1s free 1n F'(x).
Answer 2: x 1s not free, since substitution (0/z) ruins the derivation. The
generalization step is no longer legitimate: Vo F'(x) does not follow from F'(0).

19

Open variables in derivations

The reason for this confusion lies in the fact that Hilbert derivations are not
trees and reuse the same formulas. The true structure of this derivation 1s
revealed by 1ts tree-style presentation

F(z)— (Vo F(x)— F(x) ANVxF(z)) F(x) F(z)
VeF(z)— F(z) ANVzF(x) VrF(x)
F(z) ANVxF(x)

As we can see, axiom F'(x) appears twice in this derivation in quite different

substitutional contexts. In the left branch, variable z from F'(z) remains free
until the root of the derivation. In the right branch, F(z) was subjected
to generalization and binding of variable . Which occurrences of x i this
derivation are open to substitution? The answer 1s given by the boldface
occurrences x:

Flx)— (VzF(z)— F(x) NVzF(z)) F(x) F(x)
VeF(r)— F(x) NVzF(x) VrF(x)
F(x) NV F(z)

20

Open variables in derivations

The 1dea of open occurrences of a variable in a given proof tree in PA-proofs
1s that 1t 1s open for substituting a number without destroving the proot tree:
if = 1s open in a proof tree 7 (x) of a formula A(z), then 7(n) is a proof of

We assume that all derivations are presented 1n a reqular form, which we
define as follows.

1. Derivations are supplied with a tree-like proof of each of 1ts formulas,
and

Lo

. These trees do not overlap. 1.e., each occurrence of a formula m such
belongs only to one of the trees.
It 1s obvious that each Hilbert-style proof can be presented i a regular
form which proves exactly the same formulas as the original derivation.

21

Parametric semantics

Let us fix a natural multi-conclusion Godel proof predicate

Proof (z.y) = “zis the Godel number of a finite set of tree-like PA-derivations,
y s the Godel number of a root formula of one of those derivations.”

F(X)] 1s a natural arithmetical term for AK™ F(K)™,

and

d(X)] 1s a term for AK"d(K)™.
Lemma 3 For each PA-proof d, arithmetical formula F, and set of variables

X, the following formulas are provable in PA:
1. Proof (d(X), F(X)) — F(X);
2. Proof (d(Xy). F(Xy)) — Proof(d(Xy), F(X)), y € FVar(F);
3. Proof (d(Xy), F(Xy)) — Proof (d(Xy), F(Xy)).

Proof. To prove (1), reason in PA. Given X and the fact that d(X) is a proof
of F(X), we conclude that F'(X) 1s nothing but a substitutional example of
F' such that d 1s a proof of F'. Since d 1s a specific derivation, F' follows by
the standard parameter-free argument from the proof of correctness of the

propositional Logic of Proofs [1, 2.

22

Existence of operations

There exist total recursive operations on proofs -, 4+, !, and gen, such that
for anv proofs d and e, formulas F' and . and a set of imndividual variables
X, the following formulas are provable in PA:

1. Proof(d(X),(F — G)(X)) — (Proofle(X),F'(X)) — Proof(d-¢)(X),G(X));

2. Proof (d(X). F(X)) V Proof (e(X). F(X)) — Proof ((d+e)(X), F(X));

3. Proof (d(X, F(X)) — Proof (d(X), Proof (d(X), FI(X))):

4.Proof (d(X), F(X)) — Proof (gen,(d)(X),VzF (X)), z € X.

Proof The only nontrivial case 1s “verifier” ! which works as follows. Given

a proof d, 1t recovers the set X of all parameters open m d. Then for each
subset Y of X and for each formula F proved by d. 1t reconstructs the for-
mula Proof (d(Y'), F'(Y')) with free variables Y. Since d is a proof of F', these
formulas are all provable in PA. Operation “!” first finds a tree-like derivation
for each of those formulas and finally, for !d, takes the set of all such deriva-
tions. The main purpose of !d is to provide the proof of Proof (d(Y), F(Y))
for any ¥ C X.

23

Interpretation

A parametric arithmetical interpretation for the language FOLP 1s defined by
operations +, -, | and gen, which satisty Lemma and an evaluation % that
maps

e proof variables and constants to multi-conclusion arithmetical proots and

e predicate symbols of arity n to arithmetical formulas with n free vari-
ables. We suppose that * commutes with the renaming of mdividual
variables.

For prootf variables and constants, ¢* 1s given by the evaluation *, and we
take (s-¢)* to be s*-t*, (s+1t)* = s*+1*, (gen,(t))" = gen(t*), and (1t)" =!(t").

For formulas, * commutes with the Boolean connectives and quantifiers
and

(t:x F')" = Proof (t"(X), F"(X)).

1.e., (t:x F')* 1s evaluated by the natural arithmetical formula asserting that ¢
1s a prootf of F' with global variables X

24

Soundness

Each derivation in FOLP generates constant specification, which is a (finite)
set of formulas c: A mtroduced by the axiom necessitation rule R3. We say
that mterpretation * respects constant specification CS. 1f all formulas from
CS are true (hence provable in PA).

Theorem 1 |Arithmetical soundness| If FOLP = A with a constant specifi-
cation C8, then for every parametric arithmetical interpretation * respecting

CS, PA - A*.

Corollary 3 If FOS4 proves F', then
a) F is realizable in FOLP, and

b) a realization of F is a parametric provability tautology.

Corollary 4 If HPC proves F', then
a) the Godel translation of F, tr(F'), s provable in FOS4,
b) tr(F') is realizable in FOLP, and

c¢) a realization of tr(F') is a parametric provability tautology.

25

Example

Consider mtuitionistic theorem
JrA(x)— —Vr—A(z) (where A(x) is atomic).
Its stmplified Godel translation 1s
Odz0A(z) — -OVr—-OA(z),

which 1s provable mm FOS4. By the Realization Theorem. there 1s 1ts real-
1zation provable in FOLP. We leave 1t as an exercise to derive in FOLP the
tollowing realization

w:3rvi A(r) — ~wVr-via A(r).

[t 1s easy to see that with F' = Vz—w: 3 A(z), the latter formula states
w:—F'— —w:F which 1s obviously provable in FOLP.

26

Accidental tautologies

Arithmetical mterpretation based on a specific proot predicate may vield
tautologies that appear as a result of the specifics of numbering of proofs.

Example. Consider the formula
—u— L. (3)

Intuitively, this does not seem right, since the arithmetical translation of —u:_L
1s a true decidable statement clearly provable in PA, and there 1s no reason
to rule out a sophisticated u that can prove —u: L. However, this intuition 1s
not supported by the parametric semantics in which (3) is vacuously valid.
Indeed, the standard Godel numbering of formulas and proots 1s monotonic
and the code of a whole 1s strictly greater than the code of 1ts proper part.
Therefore, if (uw:—u:L)* were true, then the code of w* would be less than the
code of (—wu:L)* which 1s less than the code of u™ - a contradiction.

In order to avoid such “1dentities,” we mtroduce the notion of invariant
parametric interpretation which accepts as valid only those principles that
hold for all legitimate numerations of proofs.

27

Invariant semantics

We consider the class of all proof predicates that are provably equivalent
to the standard proof predicate but allow different numeration of proofs.

A proof predicate 1s a provably Aj;-formula Prf(z,y) for which there are
provably total recursive functions a(n) and [(n) such that

PA = Vx, y(Proof (x,y) — Prf(a(x),y)), and

PA = V., y(Proof (B(x),y) < Prf(z,y)).

Informally, o and 3 are computable translators from proofs in Prf to proofs
of the same theorems m Proof, and vice versa.

For each Prf-proof d and each set X of individual variables, d(X) 1s a
natural arithmetical term for a primitive recursive function that, for each
value N of X, recovers [3(d) - the Godel number of a regular Proof-derivation
corresponding to d, substitutes N for X in 3(d), and computes back the Prf-
number of the resulted derivation:

d(X) = a(B(d)(X)). (4)

28

Invariant semantics works

Let us reconsider formula (3) and show that it is not valid in the invariant
parametric semantics. For this we have to find a proot predicate Prf and
interpretation * such that (w—w:L)* holds (provable in PA).

In what follows we assume that an mjective numeration of the joint syntax
of FOLP and PA 1s given. Consider the following fixed-point equation that
defines an arithmetical predicate Prf(x,y).

Prf(z,y) < Proof(z,y)V(r="u' A y="=Prf("u’,"L7")7). (5)

From (5), 1t immediately follows that Prf(z,y) 1s provably A;. Moreover,
it 1s also clear from (5) that = Prf("«'." L") holds and let p be the Godel
number of its proof. So, Proof (p," = Prf("u'," L") "). Let @ and 3 be identity

functions except for
B("u')=p and «a(p)="u".

We now define the mterpretation # that interprets v as "u'. From (5), (u:
—u: 1)* holds (provable in PA), hence formula (3) is not a valid provability
principle 1 the mvariant parametric semantics.

29

Barcan is valid

Proposition Vy(t:x,A) — t:x A is valid in parametric /invariant semantics.

Lemma Let A(z) and B(x) be arithmetical formulas, and suppose for two
distinct numerals ny and na, A(n;) syntactically coincides with B(n;). Then

A(x) coincides with B(x).

Lemma Let p(z) be a derivation in PA, and Q)(x) an arithmetical formula.
If for alln =0,1,2,..., p(n) s a derwation for)(n), then p s a derivation
for () with x as a local variable.

Proof Suppose p(z) proves Fi(x), F5(x), ..., Fi(x). Since for each n there is an
¢ such that Q(n) = F;(n), by the Pigeonhole Principle, there is an 7 such that
QQ(n) = Fj(n) for two different n’s. By the previous Lemma, Q(z) = F;(x).

Principle Vy(t:x,A) —t:x A is derivable in PA for each parametric evaluation
*. Indeed. both Lemmas are formalizable in PA. Reason in PA. Suppose for
all y, t*(X,y) 1s a proof of A*(X,y). Then A*(X,y) 1s in t*(X) where y 1s
a local variable. Therefore, t*(X) is a proof of A*(X). This transfers to the
invariant semantics directly.

Corollary The explicit Barcan formula Vx(t:x,A) — gen,(t):xVzA s valid
i parametric/invariant semantics.

30

The main thing is yet to come...

[n parametric/invariant semantics, proof terms are interpreted as specific
derivations with open variables. As a result, an explicit version of the Barcan
formula holds. However., the mtuitive provability semantics for first-order
modal logic offers a somewhat different account of the Barcan formula

VexOA — OVzA.

According to this intuition, if A(x) is provable for each x, it does not guar-
antee that Yoz A(z) 1s provable. In this section, we offer a generic provability
semantics for FOLP that accommodates this imntuition.

31

Generic proof(X)

Definition Given a proof predicate Prf and a set of individual variables X,
a proof function is a pair (p(X), F) such that

1. p(X) 1s a provably total recursive function from the set of values of X to
Prf-proofs, fairly represented in PA by a term p(X): F = (Fi, ..., F},)

1s a finite set of arithmetical formulas (thought as formulas provable by

this proof function).

2. PA “knows” that for different values of X, p(X) proves substitutional
examples of formulas from F and only them, that 1s,

PA + Prf(p \/ X))): (7)

i=1

3. PA “knows” that each formula provable by p(X) actually holds. 1.e., for
each formula F' (not necessarily from F),

PA = Prf (p(X). F(X))— F. (8)

As a notational convention, we will speak about a proof function p(X) and

'..-—'-'-..___L

the set of formulas p(X) as F from the definition.

32

Generic proofs

Definition Fix a proof predicate Prf, finite set of variables Y. By a proof

form {px(X)} we understand a set of proof functions px(X), one for each
X C Y such that the following two properties are provable in PA:

e Monotonicity : Prf(px(X), A(X))) — Prf(px,(Xy), A(Xy)). This re-

flects a basic observation that any instance of a provable formula 1s 1tself

provable.
e Coherence: 1f y 1s not free mm A, then
Prf (pxy(Xy), A(X))— Prf(px(X), A(X)).

This reflects another basic observation that substitutions for a variable

that 1s not free n A do not change A.

Note that for each Prf-proof p and each Y the set of mvariant Prf-proofs
{p(X)} 1s a legitimate proof form.

In parametric semantics, proof terms are mterpreted as real derivations
with a mechanism of opening/closing variables, and operations on poof terms
as operations on these derivations. In generic semantics, we have to define

standard operations {4+, -,!, gen,} on proof forms.

33

Two-way Godel’s Lemma

The principal tool of defining prootf functions and operations:

Two-way Godel’s Lemma For each provably Aj-formula o(X). there 1s a
provably recursive function #(.X) such that

PA = Proof (t(X),0(X)) < o(X).

Proof Direction “+" 1s similar to the classical Godel’s Lemma. A tedious
analysis of the proof of Godel’s Lemma shows that the converse implication
1s also provable. However., we offer here an alternative shorter proof. Given
g(X) from the Godel's Lemma, define ¢#(X') to be a natural arithmetical term
for a provably recursive function that is equal to g(X) if o(X) holds, and to
0 (which 1s a proof of nothing) otherwise. Therefore.

PA = o(X)— Proof (t(X), o(X)).

We claim that

PA = —o(X)— —Proof (t(X),o(X))
as well. Reason in PA. If not o(X), then ¢#(X) = 0, hence #(.X) 1s not a proof
of o(X).

Operations on proof forms

The following lemma was the principal technical effort:

Lemma For each finite set Y of parameters and each proof predicate there
exist operations +.-.!,gen,. of proof forms that provably satisfy arioms of

FOLP.

Proof heavily relies on the two-way Godel’'s Lemma. Preserving reflexivity,
monotonicity, and coherence was a challenge.

This lemma gives a convenient tool for defining arithmetical interpretations
+ mmductively: 1t suffices to define * on atomic formulas and atomic proof
terms.

35

Generic semantics

A generic arithmetical interpretation of the language FOLP 1s

e a proof predicate Prf, finite set of variables Y, and operations {+, -, !, gen,.}
on proof forms for given Y :

e an evaluation * that maps proof variables and constants p to proof forms
{px (X))} and predicate symbols of arity n to arithmetical formulas with
n free variables. We suppose that * commutes with renaming of indi-
vidual variables.

For each X, mterpretation * commutes with Prf-operations on proofs, the
Boolean connectives, and quantifiers. For proof assertions.

(t.xF)* = Prf(t"(X), F*(X)).

Soundness Theorem If FOLP + F' with a constant specification CS, then
for every generic arithmetical interpretation = respecting CS, PA = F™.

36

Barcan fails

The explicit Barcan formula Vr(p:, A(r)) — gen,(p):VrA(z) is not valid.

Fix the set of variables Y = {z}, the standard proof predicate Proof
with the standard operations, and define A*(x) as —~Proof (z," L") which is
a provably Aj-formula. By the two-way Godel Lemma. there 1s a provably
recursive term g(x) such that for each x it returns the code of a proof of A(z).
Moreover,

PA = Proof (g(xz), A™(z))— A™(x).

'._._'-_-__

Consider a proof function g(x) with g(z) = {A*(z)}. Define the interpre-
tation * of proof variables as follows: p*(x) is the proof function g(x), and
* makes all other atomic proof terms 0. It 1s easy to check that each proot
variable u 1s mapped to a proof form. Under this interpretation =, the explicit
Barcan formula 1s false. Indeed, 1ts antecedent,

va Proof (g(x), 7 Proof (x,” L))

is true, by Godel’s Lemma, whereas its succedent, Proof (gen,(p)*," vz A*7),
1s false since vz A 1s equuvalent to the consistency of PA.

37

BHK intuition seems to work too

Intuitionistically unsound principle
—VzA(r)—dr-A(x)

1s not valid with respect to the generic provability semantics either. The
simplified Godel translation of this formula 1s equivalent to

O0-0VzA(r) — JorO-0A(z). (10)

Note that (10) is provable in PA if O is interpreted as the provability op-
erator “there exists a proof that” Indeed, since PA = O-0¢p — O-01.
the antecedent of (10) implies O—-0O_1, which, by the formalized Godel’s sec-
ond mcompleteness theorem. 1s equivalent to OL1. In modal logic. O1 —
Jx0-0A(z), which proves (10) in PA. This observation demonstrates that
the formal provability reading of modal operators does not conform to mtu-
1t1onistic logic m terms of Godel's translation.

We show that under any normal realization of (10), there 1s a generic
arithmetical interpretation that renders i1ts realization not provable i PA.
The proot of this fact requires yvet another fixed-poimt construction.

38

Completeness is not attainable

To simplity formulations but without a loss of generality, we consider the
languages of LP and FOLP without proof constants and logics LP, FOLP
without the axiom necessitation rule. Let PAR, INV. and GEN be sets of
FOLP-formulas valid under the parametric, invariant parametric, and generic
semantics correspondingly. From what we have already learned, 1t follows
that

FOLP € GEN <€ INV C PAR.

Theorem Neither of GEN, PAR, or INV is recursively enumerable.

Corollary FOLP is not complete with respect to any of the aforementioned
provability semantics: parametric, invariant parametric, or generic.

39

Conclusions

On the theoretical side, FOLP answers a cluster of long standing foundational
questions. e.g., a BHIK semantics for first-order imtuitionistic logic. a prov-
ability semantics for first-order S4, a general logic of proofs and propositions.

In addition, FOLP may be viewed as a general purpose justification logic:
1t opens the door to a general theory of first-order justification i which we
anticipate a variety of FOLP-like systems equipped with appropriate epistemic

semantics.

40

Thank You!

