
Estonian Winter School in Computer Science, 2004

Proof Polynomilas

“For it is far better to know something
about everything than to know all about

one thing. This universality is the best.”

Blaise Pascal, Penses

(Lectures 3-4)

Sergei Artemov
Graduate Center of the City University of New York

Modal logic: time and knowledge

Propositional logic is decidable but too restrictive. First order
and higher order logics have unlimited expressive power but are
not decidable. Modal logic appeared as an attempt to extend
propositional logic by additional connectives preserving certain
nice features like decidability.

Minimal format: propositional connectives plus unary connective
“modality” !. Intended readings of new atoms !F are
1. Epistemic - existential: “F is known”, “F is provable”, etc,
2. Temporal - universal: “F holds in all possible situations”,
“in the future F will always hold”, etc.

Usually preserves decidability.

History and Applications

C.I. Lewis (1918): Initiated the modern analysis of modality. He de-

veloped the logical systems S1-S5.

JCC McKinsey (1941): used algebraic methods (Boolean algebras with

operators) to prove the decidability of Lewis’ S2 and S4.

McKinsey-Tarski (1948): topological semantics !F = interior(F), pro-

vides a mathematical model for intuitionism, logic of approximate measure-

ments, leads to logics for dynamic systems, etc.

Kripke (1959): possible worlds à la Leibniz, by far the most widely used

semantics.

Hoare (1969): partial correctness statements A{G}B =“if A holds before

the execution of G then B holds afterward”, a classic of program verification.

Recently Tony Hoare was knighted by the British Queen.

Pratt (1976): logic of programs, [C]ϕ = ϕ holds while C is executed,

each [C] is an S4-modality. Kripke style semantics where possible worlds are

machine states. Stanford University Network = (SUN).

Pnueli (1977): branching temporal logic = logic of concurrency. The

language of verification and model checking. Turing award in CS.

Logic of Knowledge: a core AI topic, KA(ϕ) = “agent A knows ϕ”,

multiple modalities. Logical Omniscience Problem: build a logic of knowl-

edge that distinguishes hard and easy problems. Prime factorization example.

Basic systems of modal logic

System K:
A1. Propositional axioms and rules
A2. !(F →G)→(!F →!G) (distribution)

Nec. Necessitation rule:
" F

" !F

System K4 is K +
A3. !F → !!F (positive introspection/transitivity)

System S4 is K4 +
A4. !F → F (reflexivity)

System S5 is S4 +
A5. ¬!F → !(¬!F) (negative introspection)

Some of derivations in K (hence in all other modal logics).

Theorem: ! and ∧ commute

A→(B→A ∧ B) A ∧ B→A
!(A→(B→A ∧ B)) !(A ∧ B→A)
!A→!(B→A ∧ B) !(A ∧ B)→!A
!A→(!B→!(A ∧ B)) !(A ∧ B)→!B
(!A ∧ !B)→!(A ∧ B) !(A ∧ B)→(!A ∧ !B)

Theorem: ! factors out through ∨:

A→A ∨ B But not !(A ∨ B)→(!A ∨ !B)!
!(A→A ∨ B) Consider B to be ¬A. Whatever
!A→!(A ∨ B) intended reading of modality you
!B→!(A ∨ B) take !(A ∨ ¬A)→(!A ∨ !¬A)
(!A ∨ !B)→!(A ∨ B) cannot be valid.

Modality dual to !: "F ≡ ¬!¬F .
Intended semantics is derivative from the one for !F :

if !F denotes “F holds in all possible situations”,
then "F stands for “F holds in at least one possible situation”

(the latter has been usually described as !F denotes “F is nec-
essary” and "F stands for “F is possible”)

Exercise: S4 " A → "A (thus S4 " !A → "A).
Indeed: S4 " !¬A → ¬A, S4 " ¬¬A → ¬!¬A, S4 " A → ¬!¬A.

In many respects modal logics behave like normal logical sys-
tems. In particular, they are closed under substitution:

If Γ(p) " F (p) then Γ(p/A) " F (p/A) for any A

Modal logics admit equivalent substitution:
For L=K, K4, S4, S5, if L " A ↔ B then L " F (p/A) ↔ F (p/B)
for any formula F (p)

NOTE: Deduction Theorem fails for L=K, K4, S4, S5. In-
deed, in all of those logics A " !A, by Necessitation, however,
none of them derives A → !A. To prove that we need to de-
velop some sort of negative test for L, for example, some sort
of formal semantics true/false in a certain class of models along
with a corresponding soundness theorem. Then by showing that
F is false we can establish that F is not derivable.

One more example:

Derivation in K4, S4, S5 that F → !F holds not only for F ≡ !A

(transitivity axiom), but for F ≡ !A ∨ !B as well.

!A→!A ∨ !B
!(!A→!A ∨ !B)
!A→!!A
!!A→!(!A∨!B)
!A→!(!A∨!B)
!B→!A ∨ !B
!(!B→!A ∨ !B)
!B→!!B
!!B→!(!A∨!B)
!B→!(!A∨!B)
!A∨!B→!(!A∨!B)

Possible Worlds Semantics by Saul Kripke.
Classical logic, propositional and quantified alike, gives a static
picture of the world. A classical interpretation (model) is an
assignment of truth values to atoms of the language. Modal
logic has a striking ability to capture adequately a very natu-
ral semantics of “possible worlds” which can be traced back to
Leibniz. The possible worlds universe consists of a collection of
classical models W connected by a binary accessibility relation
R(a, b) “world b is accessible from world a”. In other worlds,
the possible worlds constitute an ordered graph, not necessarily
finite. Whereas classical connectives operate within individual
worlds (i.e. nodes in W), modality reaches out to all the worlds
accessible from a given one (possible worlds):

!F holds in a iff F holds in all b’s accessible from a.

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

!

! !

!
!

!
!

!
!

!
!#

!A

A

"
"
"
"
"
"
"
"$
A

Model Kripke is a triple K = (W, R, |=),
where W is a nonempty set (elements of
which are called “possible worlds”), R a
binary relation on W , and |= a truth as-
signment having form: “world|=formula”
such that each propositional letter gets
some truth value in any world from W .
We assume also that for any x ∈ W both
x |= true and x (|= false.

The definition of x |= F (read as a formula F is true in a world
x, or x forces F) goes by induction on F :
x |= A ∧ B iff “x |= A and x |= B”
x |= A ∨ B iff “x |= A or x |= B”
x |= ¬A iff “x (|= A”
x |= !A iff “y |= A for all y such that R(x, y)”

By default, we assume that A → B stands for ¬A ∨ B, thus im-
posing the classical truth tables on boolean connectives at every
given node. From the definition it is clear that a Kripke model is
a collection of classical models connected by some sort of binary
“accessibility” relation.
Modality ! is the only connective able to reach out to other
possible worlds, i.e. nodes of the model accessible from a given
one.
We may regard !F as a sort of restricted universal quantifier
“for all possible worlds F holds”. It turns out that such limited
quantification enables us to express some important features like
time and process termination without compromising the decid-
ability of the propositional logic.
"F holds in x iff F holds in some y accessible from x.

Example
Consider a three-element “V-shaped” model with W = {0,1,2}
given by an oriented graph below. According to this graph,
R(0,1), R(0,2), and neither of R(1,2), R(2,1), R(1,0), R(2,0),
R(0,0), R(1,1), R(2,2) holds.

Notational convention: we label the nodes
with propositional variables true at a given
node. By default, all variables not listed
next to a node are assumed false at this
node. In particular, 1 |= p, 2 |= q, 1 (|= q,
2 (|= p, 0 (|= p, 0 (|= q, and all other variables
are false at all nodes.

!
!

!
!

!
!

!
!#

0

1
p

"
"
"
"
"
"
"
"$

q
2

!

! !

Question: for each of the formulas !p, !q, !(p ∧ q), !p ∧ !q,
!(p ∨ q), !p ∨ !q, list the nodes where this formula is true.

Answer:
!p is true at 1 and 2, but not at 0. Indeed,
the set of accessible worlds for either 1 or 2 is
empty, thus FOR ALL worlds accessible from
each of them p holds. !p is false at 0, since
p fails at 2 which is accessible from 0.
Likewise, !q holds at 1 and 2, but not in 0.

!
!

!
!

!
!

!
!#

0

1
p

"
"
"
"
"
"
"
"$

q
2

!

! !

Formula p ∧ q is false at every node. Formula !(p ∧ q) is true at
1 and 2, but not at 0, so do !p ∧ !q and !p ∨ !q.
Formula p ∨ q is true at 1 and 2, but not at 0. Formula !(p ∨ q)
is true at every node. Indeed, it is true at 1 and 2 by trivial
reasons (above), hence it also true at 0, since p ∨ q is true at
every possible world for it.
Note, that 0 (|= !(p ∨ q) → (!p ∨ !q)!. Hence we have found a
model where this formula fails.

Truth value of a modal formula very much depends upon specific
details of accessibility relation.

For example, consider the same model as
above, but with all nodes made reflexive, i.e.
R(0,0), R(1,1), and R(2,2) (we denote re-
flexive worlds by “circled” nodes, as on the
picture). The same formulas now have quite
a different meaning.

!
!

!
!

!
!

!
!#

0

1
p

"
"
"
"
"
"
"
"$

q
2

!

! !

"

" "

In particular, !p is true at 1, but not at 0 and 2. Likewise, !p is
true at 2, but not at 0 and 1.
It turned out that each of the modal logics under consideration is
complete with respect to a corresponding class of Kripke mod-
els which can be characterized by the property of accessibility
relation only.

Definition. A formula F is true in a model K (notation: K |= F)
if F holds at every node of K. A formula F is valid (in a given
class of models) if it is true in every model (of this class).

Consolidated Soundness Theorem
• If K " F then F is valid in all models.
• If K4 " F then F is valid in all transitive models.
• If S4 " F then F is valid in all transitive reflexive models.
• If S5 " F then F is valid in all transitive reflexive symmetric
models .

Proof. A pretty straightforward induction on the length of
derivation in a given logic. We first prove that axioms are true in
every model. Then we check that rules when applied to formulas
true in all models (of a given class) produce a formula true in
every such model as well.

Soundness of K.

A1. Propositional axioms
are true at every node since each node is a classical model.

A2. !(F →G)→(!F →!G) (distribution)
We have to prove that A2 is true at every node x of every model. Suppose

x |= !(F → G) and x |= !F , then for every y accessible from x both F → G

and F hold, hence G does. Since G holds for every y accessible from x, the

formula !G holds at x.

Modus Ponens:
F → G, F

.
G

Obviously holds at each node.

Nec.:
" F

" !F

By contrapositive, suppose there is a model K,
where !F is false at some node x. Then there
should be a node y (accessible from x), where F is
false. Therefore, F is false in K.

Soundness of K4

A3. !F → !!F (positive introspection/transitivity)

Suppose x |= !F . In order to establish that x |= !!F consider
any y accessible from x and check that y |= !F . To do this, we
have to consider any z accessible from y and prove that z |= F .
The latter holds since z is also accessible from x (transitivity!),
and thus x |= !F yields z |= F .

Soundness of S4

A4. !F → F (reflexivity)

Suppose x |= !F . Then y |= F for all y accessible from x,
in particular, for y = x. Thus x |= F .

Soundness of S5

A5. ¬!F → !(¬!F) (negative introspection)

Suppose x |= ¬!F , then y (|= F for some y accessible from x. In
order to establish that x |= !¬!F consider any z accessible from
x and check that z |= ¬!F . Since accessibility here is symmetric,
x is accessible from z. By transitivity, y is also accessible from z.
Thus we have found a node y accessible from z and such that
y (|= F . Thus z |= ¬!F .

To show that p → !p is not derivable in modal logic, it now
suffices to build a countermodel K = (W, R, |=) for this formula.
Consider W = {0,1} and let accessibility be a complete graph on
W , i.e. R(0,0), R(0,1), R(1,0), R(1,1). Put 0 |= p and 1 (|= p.
Clearly, K is a legitimate S5 model, since R is an equivalence
relation on W .

Moreover, 0 |= p, but 0 (|= !p, since 1 (|= p and 1 is accessi-
ble from 0. Therefore, 0 (|= p → !p.

By the soundness theorem, S5 (" p → !p, thus none of the other
logics K, K4, S4 does.

Completeness Theorem

• K " F iff F is valid in all models.
• K4 " F iff F is valid in all transitive models.
• S4 " F iff F is valid in all transitive reflexive models.
• S5 " F iff F is valid in all transitive reflexive symmetric models .

Proof. By the maximal consistent sets construction (sometimes
called canonical model. We will establish completeness of S4

along with cut-elimination below.

Exercise. Prove that all logics K, K4, S4, S5 are distinct. Hint:
show that each next axiom is not derivable in the previous sys-
tem, use models.

Genten style proof systems contain the usual classical rules and
modal rules for K:

Γ⇒ A

!Γ⇒ !A

for K4:

Γ, !Γ⇒ A

!Γ⇒ !A

Genten style proof system for S4 is called S4G and contains the
classical rules plus two modal rules

A,Γ⇒∆
(! ⇒)

!A,Γ⇒∆

and

!Γ⇒ A
(⇒ !)

!Γ⇒ !A

where (!{A1, . . . , An} = {!A1, . . . , !An}).

By S4− we mean the system S4 without cut rule.

Consolidated Completeness Theorem for S4

The following are equivalent
1. S4G− " Γ⇒∆
2. S4G " Γ⇒∆
3. S4 " ∧Γ⇒ ∨∆
4. ∧Γ⇒ ∨∆ is true at a every S4-model.
5. ∧Γ⇒ ∨∆ is true at a every finite S4-model.

Corollary for S4: Kripke completeness, cut elimination, equiva-
lence of Gentzen Hilbert systems, finite model property.

Proof. 1 ⇒ 2 and 4 ⇒ 5 are trivial, 2 ⇒ 3 is an easy exercise,
3 ⇒ 4 is the soundness theorem shown above. It suffices now
to show 5 ⇒ 1. The latter is proven by the contrapositive: if
S4G− (" Γ⇒∆, then ∧Γ⇒ ∨∆ has a finite S4-countermodel.

(The proof is given in class)

Gödel’s embedding of Int into S4:

1. translate Int-formula F into a classical language !:
tr(F) = “box each subformula of F”,

2. test the translation in S4.
Theorem (Gödel (1933), McKinsey & Tarski (1948))

Int proves F ⇔ S4 proves tr(F)

Proof. Given in class.

The mission of building BHK semantics has not been accom-
plished yet, since S4 itself still has not been given an exact
provability model

Int ↪→ S4 ↪→ ? ↪→ REAL PROOFS

Yet another proof system Natural Deduction.

Connections to the rest of the world:
1. Gentzen’s sequent Γ⇒ F is nothing but an input/output record of a Nat-

ural derivation of F from hypotheses Γ.

2. Natural derivations in Int are isomorphic to typed λ-terms, where propo-

sitional formulas are regarded as types (famous Curry-Howard isomorphism).

On the top of that we will observe that objects in the typed Combina-

tory Logic CL→ (combinatory terms) are nothing but proof terms in the

Hilbert style proof system. Typed λ-calculus and typed combinatory logic

CL→ naturally emulate each other the way Hilbert style Natural Deduction

proof systems are mutually interpretable.

Proof threes in IntN (= Intuitionistic logic, Natural deduction style) are finite

oriented threes with nodes labelled by formulas. Formulas from the leaves

denote assumptions of this proof tree, the formula at the root node is the

one derived by the proof tree. Assumptions from the leaves may be in open

(denoted as A) and closed (discharged) forms denoted as [A]u. The latter

stands for auxiliary assumptions which were open once but then have been

subsumed by the goal formula the way the Deduction Theorem incorporates a

hypothesis into the derived formula. Each assumption is labelled by a special

marker proof variable, usually suppressed for open assumptions. Distinct as-

sumptions must have distinct markers. Assumptions are discharged in groups

corresponding to a given marker.

Induction base: The single-node tree labelled by any formula A is a proof tree

with the open assumption A; there are no closed assumptions.

Inductive step. We formulate a number of tree constructing rules where the

premised are roots of already built proof threes.

D1
A

D2
B

∧I
A ∧ B

D1
A ∧ B

∧ER

A

D1
A ∧ B

∧EL

B

D1
A

∨IR
A ∨ B

D1
B

∨IL
A ∨ B

[A]u [B]v

D1 D2 D3
A ∨ B C C

∨E,u, v

C

[A]u

D1

B
→ I,u

A→B

D1
A→B

D2
A

→E
B

D1
⊥

⊥
A

Examples of natural derivations:

[A ∧ B]u

A
u

A ∧ B→A

[A]u

A ∨ B
u

A→A ∨ B

[A]u

B→A
u

A→(B→A)

[A]v [A→⊥]u

⊥
u

(A→⊥)→⊥
v

A→¬¬A

[A]v [A→⊥]u

⊥

B
u

(A→⊥)→B
v

A→(¬A→B)

More examples:

[A]u [A→B]w

B [B→⊥]v

⊥
u

¬A
v

¬B→¬A
w

(A→B)→(¬B→¬A)

More:

[A]v [A→⊥]u

⊥
u

(A→⊥)→⊥ [((A→⊥)→⊥)→⊥]w

⊥
v

A→⊥
w

¬¬¬A→¬A

And yet more, with multiple markers:

[A ∧ B]u

B

[A ∧ B]u

A [A→(B→C)]v

B→C

C
u

(A ∧ B)→C
v

(A→(B→C))→((A ∧ B)→C)

Finally, something about introducing disjunction:

[A∨B]w

[A]u [A→C]y

C

[B]v [B→C]x

C
u, v

C
w

A∨B→C
x

(B→C)→(A∨B→C)
y

(A→C)→((B→C)→(A∨B→C))

Sequents are input/output snapshots of construction steps of a
natural deduction. Translation table (multiple weakenings are
suppressed for brevity):

Natural Deduction Gentzen’s derivation

A A ⇒ A

A B

A ∧ B

Γ⇒ A Γ⇒ B

Γ⇒ A ∧ B

A ∧ B

A

Γ⇒ A ∧ B

A ⇒ A

A ∧ B ⇒ A
Cut

Γ⇒ A

Natural Deduction Gentzen’s derivation

⊥

A

Γ⇒ ⊥ ⊥ ⇒ A
Cut

Γ⇒ A

A→B A

B

Γ⇒ A→B

Γ⇒ A B ⇒ B

A→B,Γ⇒ B
Cut

Γ⇒ B

Disjunction cases: exercise!

From Gentzen to Natural Deduction.

An obvious obstacle: how to understand empty succedents (right parts of
sequents), since there are no Natural derivations without conclusions.

Lemma. If sequent Γ ⇒ A is provable in IntG, then there is a proof which

exclusively contains sequents with a single succedents. If Γ ⇒ is provable,

then Γ⇒ A is provable for any A.

Proof “by example”.

Main (and the only) idea: move weakenings up to axioms. If succedents

remain empty till the root sequent, plug ⊥ to all empty succedents:

A ⇒ A ⊥ ⇒

A,¬A ⇒

A, A ∧ ¬A ⇒

A ∧ ¬A, A ∧ ¬A ⇒

A ∧ ¬A ⇒

A ∧ ¬A ⇒ B

⇒ (A ∧ ¬A)→B

A ⇒ A ⊥ ⇒ B

A,¬A ⇒ B

A, A ∧ ¬A ⇒ B

A ∧ ¬A, A ∧ ¬A ⇒ B

A ∧ ¬A ⇒ B

A ∧ ¬A ⇒ B

⇒ (A ∧ ¬A)→B

From Gentzen to Natural Deduction.

A ⇒ A B ⇒ B

A→B, A ⇒ B A→B, A,⊥ ⇒ ⊥

A→B, A, B→⊥ ⇒ ⊥

A→B, A ∧ ¬B,¬B ⇒ ⊥

A→B, A ∧ ¬B, A ∧ ¬B ⇒ ⊥

A→B, A ∧ ¬B ⇒ ⊥

A→B ⇒ ¬(A ∧ ¬B)

⇒ (A→B)→¬(A ∧ ¬B)

[A ∧ ¬B]u

A [A→B]v

B

[A ∧ ¬B]u

B→⊥

⊥
u

¬(A ∧ ¬B)
v

(A→B)→¬(A ∧ ¬B)

Normalization in Natural Deduction.
Obvious redundancies in Natural derivations are caused by an I rule followed

by an E rule in the same position. Here is a complete list of such configura-

tions along with the proposed conversions to eliminate a given redundancy.

Here conv means “converts to”. A derivation is normal if none of those

redundancies occurs.

D1
A1

D2
A2

A1 ∧ A2

Ai conv

Di

Ai

D
Ai

A1 ∨ A2

[A1]u

D1
C

[A2]v

D2
C

C conv

D
[Ai]
Di

C

[A]u

D
B

A→B
D1
A

B conv

D1
A
D
B

In a normal Natural derivation each Elimination rule precedes each Introduc-

tion rule.

Theorem. Every Natural Deduction derivation has a normal form.

Proof. In principle, in this form the claim can be deduced from the normal-

ization theorem for Gentzen proof system. Indeed, there is an algorithm (cf.

BPT) of transforming Cut-free Gentzen derivations and translating them to a

normal Natural derivations (cf, also “Logic and Structure” by van Dalen). A

stronger claim that the reduction system above eliminates ALL redundancies

is a bit harder to establish.

Propositions as types interpretation.

Atomic propositions can be read as data types, i.e. Nat, Real,
Boolean, ListsT over a given type T .

Implications A → B denote a functional type, i.e. the type of
all functions from type A to type B. In particular, type

(Nat→Nat)→Nat
stands for functionals over natural numbers, i.e. a function which
maps integer functions to natural numbers. Type

Nat→(Nat→Nat)
may be interpreted as encoding an integer function of two vari-
ables: given integer x = n we get a function Fn(y). Given another
integer y = m we get the integer output Fn(m).

Simple Types. To begin talking about data types and functions
is sufficed to have “implication” only. Types generated by im-
plications are called simple types T . We consider propositional
variables V = {p0, p1, p2, . . .} as type variables and define T by
the following grammar:

T = V | T →T

A usual reading of this definition is a) each variable is a simple
type, b) if A and B are simple types, then (A → B) is again a
simple type. Notational convention: A1 → A2 → A3 → . . . → An

reads

(A1→(A2→(A3→ . . .→An)) . . .)

Lambda-terms.

Consider a famous mathematical joke. From the elementary calculus we

know that the derivative of x2 is 2x, i.e. (x2)′ = 2x. Plug in x = 1, and

get (12)′ = 2 · 1. On the other hand, the derivative of a constant is zero,

thus (12)′ = (1)′ = 0, hence 2 = 0 and mathematics is inconsistent. The

problem here appears in messing two different meanings of x2 as a term

having type Real, and a function of type Real → Real. Students learn this

defaults, sometimes with difficulties, and often without a real understanding

of the difference. Computers do not understand our defaults and require

absolute precision of the language used.

Let us reserve x2, 2x for terms of type Real, and λx.x2, λx.2x for functions

from x to x2 and from x to 2x on reals, respectively. The above equality should

be read as D[λx.x2] = λx.2x, where D denotes a differentiation operator.

In this expression variable x is bound i.e. local, in particular, one cannot

substitute a numeric value for x.

Simply typed λ-terms = prototype functional programs.

Notational convention: for term t of type S we will use both tS and t :S.

1. Variables xA
0 , xA

1 , xA
2 , . . . for each simple type A are λ-terms of type A.

2. Given tA→B and sA one may construct a new term (tA→B ·sA)B (application).

An alternative notation here is (tA→BsA)B

3. Given a term tB and a variable xA there is a new term (λxA.tB)A→B (lambda

abstraction). Variable xA is bound in (λxA.tB)A→B, other free (not bound)

variables of tB remain free in (λxA.tB)A→B.

In general, we shall omit type-indications whenever it is possible to recover

them from a context. Notational convention: str should be read as (st)r.

Term λx1(λx2(. . . (λxn.t) . . .)) reads as λx1x2 . . . xn.t. Application binds more

strongly than abstraction, thus λx.st is λx.(st) rather than (λx.s)t. We do

not distinguish λ-terms that differ only in names of bound variables, e.g.

λxA.yA→BxA is the same as λzA.yA→BzA.

Curry vs. Church typing, applications.

Curry’s definition introduces terms without types first and then addresses

the problem of recovering types (“implicit typing”). This corresponds to the

programming paradigm (cf. ML), when a compiler should check whether a

type can be assigned to the program. Church suggested “explicit typing”,

when a program (λ-term) should be written together with its type (ALGOL

68, PASCAL). The definition above is the Church style one.

Type checking is an important verification (debugging) tool in programming

languages.

Curry-Howard isomorphism: a preview.

Simple types = propositional formulas (in the implicational fragment of Int).

Typed λ-term of type T = natural style intuitionistic derivation of T .

Natural deduction step λ-term construction step

Au u :A

A→B A

B

s :(A→B) t :A

st :B

[A]u
...
B

A→B

u :A
...

t(u):B

λu.t(u):(A→B)

Example on Curry-Howard isomorphism.

Given Natural derivation of (A → B) → (A → C) with an open assumption

A→(B→C) we build a λ-term of type (A→B)→(A→C) with a free variable

z :(A→(B→C)).

[A]x (A→(B→C))z

B→C

[A→B]y [A]x

B

C
x

A→C
y

(A→B)→(A→C)

x :A, y :(A→B), z :(A→(B→C)), zx :(B→C), yx :B, zx(yx):C

λx.zx(yx):(A→C), λyx.zx(yx):((A→B)→(A→C))

Implicational fragment of Int.

Three equivalent definitions:

1) all implications-only formulas derivable in Int,

2) Hilbert style system with Modus Ponens and axioms

A1. A → (B → A)

A2. (A → (B → C)) → ((A → B) → (A → C))

3) Gentzen style system with rules concerning implication

A,Γ⇒ B
(⇒,→)

Γ⇒ A→B

Γ⇒ A B,Γ⇒∆
(→,⇒)

A→B,Γ⇒∆

Exercise: prove that those three definitions are equivalent. Prove that for

the classical logic those definitions are not equivalent.

Combinatory Logic
So far we have noticed that for intiutionistic logic Natural derivations (es-

sentially equivalent to Gentzen style derivations) has an isomorphic compu-

tational copy known as typed λ-terms. Do Hilbert style proofs have a similar

computational analogue? The answer to this question is positive: typed

Combinatory Logic CL→, which is as old as λ-calculus, provides an isomor-

phic copy of Hilbert style proofs.

Definition of Combinatory terms.
1. Variables xA

0 , xA
1 , xA

2 , . . . for each simple type A are terms of type A.

2. Constants kA→(B→A) for all types A, B

3. Constants s(A→(B→C))→((A→B)→(A→C)) for all types A, B, C

4. Given tA→B and sA one may construct a new term (tA→BsA)B (application).

Set theoretical semantics of types and computational semantics
of terms.

Atomic types may be interpreted as sets, function types A → B as sets of

all total functions from A to B (sorry for an enormous cardinality explo-

sion). Not all of those functions are computable, or otherwise efficient.

Computable functions are build from a certain initial supply of those by a

given set of operations. Combinatory logic over simple types may be re-

garded as a rudimentary computational model for arbitrary sets. Constants

k and s provide simple examples of constructive objects (e.g. functions).

Application applies a function to an appropriate input of the matching type

and produces again a constructive object. A type is inhabitant is it contains

a constructive object. Universally inhabitant types are exactly theorems of

intuitionistic logic. In specific interpretations additional data can make some

other types also inhabitant. Though ridiculously simple, combinatory terms

present “almost” universal computational model: if we ignore type (untyped

Combinatory Logic) emulates all recursive functions.

Finding Hilbert style derivations and building combinatory terms
are similar tasks.
Example “Good old” derivation of A→A.

1. (A → ((A → A) → A)) → ((A → (A → A)) → (A → A)) (axiom 2)

2. A → ((A → A) → A) (axiom 1)

3. (A → (A → A)) → (A → A) (from 1., 2., by MP)

4. A → (A → A) (axiom 1)

5. A → A (from 3. and 4., by MP)

The corresponding combinatory term:

1. s:[(A → ((A → A) → A)) → ((A → (A → A)) → (A → A))]

2. k1:[A → ((A → A) → A)]

3. sk1:[(A → (A → A)) → (A → A)]

4. k2:[A → (A → A)] (axiom 1)

5. sk1k2:[A → A]

Axioms = combinatory constants
Modus Ponens = application
Open assumptions of a proof = free variables of the term, notation

x1:A1, x2:A2, . . . , xn:An " t(x1, x2, . . . , xn):B,

where block x1:A1, x2:A2, . . . , xn:An is called basis or context and contains

all free variable of t(x1, x2, . . . , xn). From the programming point of view the

context is the list of all inputs of the program t(x1, x2, . . . , xn) with their types.

Example of a derivation from hypotheses translated to combinatory logic

1. x:(A → B) (a hypothesis)

2. y:(B→C) (a hypothesis)

3. k:((B→C)→(A→(B→C))) (axiom 1)

4. ky:(A→(B→C)) (from 2 and 3, by MP)

5. s:((A → (B→C)) → ((A → B)→(A→C))) (axiom 2)

6. s(ky):((A → B)→(A→C)) (from 4 and 5, by MP)

7. s(ky)x:(A→C) (from 1 and 6, by MP)

Combinatory Logic and λ-calculus are mutually interpretable.

Hilbert style proof system derives the same formulas as Natural deduction.

Likewise, there are algorithms that translate Combinatory terms to λ-terms

and vice versa. To translate CL→ to λ-calculus it suffices to build λ-terms

corresponding to constants k and s, which we leave as a useful exercise.

To translate λ-calculus to CL→ one has to mimic λ-abstraction in CL→. We

will put this question in a formal setting later.

Meanwhile both CL→ and λ-calculus are capable of internalizing Int-derivations:

if A1, . . . , An " B in Int then x1:A1, . . . , xn:An " t(x1, . . . , xn):B in CL→.

Conversions in Combinatory Logic

The canonical set-theoretical model of CL→ suggests some further specifi-

cations of operations on combinatory terms. Consider term kxy, where, as

usual, combinator k : (A → (B → A)), hence x :A and y : (B → A). An easy

computation shows that kxy:A, i.e. term kxy denotes some element A. As a

matter of a fact, we can specify such an element immediately without even

applying any combinators: it is x:A! This semantical consideration suggests

the conversion

kxy cont x

Here kxy is called the redex of reduction and x a contractum. The same

conversion is suggested by the proof interpretation of CL→: we are looking

for a proof kxy of A, and x:A provides such a (possibly, different) proof.

Consider term sxyz, where combinator

s:((A → (B→C)) → ((A → B)→(A→C))),

hence x : (A → (B → C)), y : (A → B), z :A. Term sxyz :C denotes some

element of C, and again we can specify such an element without using any

combinators. Indeed, xz(yz):C, which suggests a conversion

sxyz cont xz(yz)

(redex sxyz, contractum xz(yz)).

We say t .1 t′ if t′ is obtained from t by replacing one redex by the corre-

sponding contractum. Let also . be the reflexive and transitive closure of .′.

Finally, the equality “=” on combinatory terms is a symmetric and transitive

closure of ..

Normal forms of combinatory terms.

A term t is in normal form, if t does not contain a redex. t has a normal form

if there is a normal t′ such that t . t′. A term is strongly normalizing, if its

reduction tree is finite, i.e. each reduction sequence is finite.

Theorem. Each term in CL→ is strongly normalizing and has a unique normal

form.

Proof. A pretty tricky induction, cf. BPT, and Barendregt. Uniqueness

of normal forms follows from so-called confluence property, a.k.a. Church-

Rosser property: if t . t1 and t . t2, then there is a t3 such that t1 . t3

and t2 . t3. Indeed, assume Church-Rosser property, and suppose t has two

normal forms t1 and t2, in particular, t . t1 and t . t2. By Church-Rosser,

there is t3 such that t1 . t3 and t2 . t3. Since both t1 and t2 are normal, t1

coincides with t3 and t2 coincides with t3, t1 coincides with t2.

Conversions and normal forms in simply typed λ-calculus.

The most important reduction in λ-calculus is based on β-conversion:

(λxA.tB)sA contβ tB[xA/sA],

where tB[xA/sA] denotes the result of substitution of sA for xA in tB. Naturally

substitutions should not allow collisions of variables in sA and tB.

Theorem. Each λ-term is strongly normalizing and has a unique normal form.

Proof. Even trickier induction, cf. BPT, and Barendregt. Uniqueness again

is established as a corollary of the Church-Rosser property.

Emulated λ-abstraction in CL→.

Theorem. To each term t of CL→ there is a term λ∗xA.t containing no xA free

such that

(λ∗xA.t)sA . t[xA/sA]

Proof. We define λ∗xA.t by induction on t:

1. λ∗xA.x := s(A→((A→A)→A))→((A→(A→A))→(A→A))kA→((A→A)→A)
1 kA→(A→A)

2

2. λ∗xA.yB := kB→(A→B)yB, for y different from x

3. λ∗xA.tB→C
1 tB2 := s((A→(B→C))→((A→B)→(A→C)))(λ∗x.t1)(λ∗x.t2).

It is an easy exercise to verify that the stated property holds.

Exercise 19. Which of the following is provable in S4? Give a proof, if any.
Provide a countermodel otherwise.

a) !(A→!B)→(A→!!B)
b) !(!A→!B) ∨ !(!B→!A)

Exercise 20.

a) Establish the Disjunctive Property for S4: " !A∨!B yields " !A or " !B.
b) Does the Disjunctive Property hold for S5?

Exercise 21. Prove Gödel’s Theorem of 1933: Int " F ⇒ S4 " F !,
where F ! is Goedel’s translation consisting in prefixing each occurrence of
a subformula in F by !. Hint: induction on a derivation of F in Int. Base
case corresponds to the axioms of Int, prove that their translations are all
derivable in S4. The Induction step is MP in Int.

Exercise 22. Prove McKinsey-Tarski theorem of 1948: for any propositional
formula F if S4 " F ! then Int " F . Hint: do the contrapositive, of course,
i.e. if Int (" F then S4 (" F !. Let Int does not prove F . Then there is an
intuitionistic countermodel Kripke K = (W,0, |=) for F . Note that K may
be regarded as an S4 model K ′, since it is reflexive and transitive. It now

suffices to show by induction of formula F that for each subformula G of F
and for each node x ∈ W

x |=K G iff x |=K ′ F !

Exercise 23. Prove Internalization rule for modal logics (K,K4,S4,S5):

A1, A2, . . . , An " B

!A1, !A2, . . . , !An " !B

Exercise 24. Establish cut-elimination property, Kripke completeness, finite
model property for the modal logic K. (Hilbert and Gentzen style axioms were
given in Lecture 10). Assume proven: Kripke soundness of K, and equivalence
of Hilbert and Gentzen style proof systems for K.

Exercise 25. Which of the following is provable in S4? Give a proof, if any.
Provide a countermodel otherwise. a) !(A→!B)→(A→!!B)
b) !(!A→!B) ∨ !(!B→!A)

Exercise 26.
a) Establish the Disjunctive Property for S4: " !A∨!B yields " !A or " !B.
b) Does the Disjunctive Property hold for S5?

Exercise 27. Prove Gödel’s Theorem of 1933: Int " F ⇒ S4 " F !,
where F ! is Gödel’s translation consisting in prefixing each occurrence of a
subformula in F by !. Hint: induction on a derivation of F in Int. Base
case corresponds to the axioms of Int, prove that their translations are all
derivable in S4. The induction step is MP in Int.

Exercise 28. Prove McKinsey-Tarski theorem of 1948: for any propositional
formula F if S4 " F ! then Int " F . Hint: do the contrapositive, of course,
i.e. if Int (" F then S4 (" F !. Let Int does not prove F . Then there is an
intuitionistic countermodel Kripke K = (W,0, |=) for F . Note that K may
be regarded as an S4-model K ′, since it is reflexive and transitive. It now
suffices to show by induction on a formula that for each subformula G of F
and for each node x ∈ W

x |=K G iff x |=K ′ G!

Exercise 29. Prove Internalization rule for modal logics (K,K4,S4,S5):

A1, A2, . . . , An " B

!A1, !A2, . . . , !An " !B

Exercise 30. Establish cut-elimination property, Kripke completeness, finite
model property for the modal logic K. (Hilbert and Gentzen style axioms were

given in Lecture 10). Assume proven: Kripke soundness of K, and equivalence
of Hilbert and Gentzen style proof systems for K.

Exercise 31. Find derivations in IntN
a. (p→q)→¬(p ∧ ¬q)
b. (¬p ∨ q)→(p→q)
c. (p→(q→r))→((p ∧ q)→r)

Exercise 32. Find a Gentzen style derivation of ⇒ ¬¬(¬¬p→ p). Apply the
step-by-step algorithm of transforming Gentzen style derivations into IntN-
derivations to transform this derivation into a Natural derivation of a formula
¬¬(¬¬p→p).

Exercise 33. Find a derivation of (p → q) → ¬(p ∧ ¬q) in IntN. Apply the
algorithm of transforming IntN-derivations into Gentzen style derivations to
transform this derivation into an IntG-derivation of a sequent ⇒ (p → q) →
¬(p ∧ ¬q).

Exercise 34. Consider Peirce Law ((p → q) → p) → p, which is a classical
tautology not derivable in Int (prove!). Show that the classical logic Cl is not

conservative w.r.t. its fragment axiomatized by axioms and rules concerning
implication only.

Exercise 35. Find a λ-term corresponding to an IntN-derivation of ((p∧q)→
r)→(p→(q→r)).

Exercise 36. Find internalizations of proofs from 3.2 and 3.3. That means,
for a derivation A1, A2 " F find a combinatory term (or a λ-term) t(x1, x2)
such that if xA1

1 and xA2

2 , then tF . In other words, if variables x1, x2 have
types A1, A2 respectively, then t(x1, x2) has type F . Yet another equivalent
formulation of the desired: x1:A1, x2:A2 " t(x1, x2):F .

Exercise 37. Find a normal form of combinatory term s · x · (k · y) · z, where
types match properly:
s:[(A→(B→C))→((A→B)→(A→C))]
k:(B→(A→B))
x:(A→(B→C)), y:B, z:A.

Exercise 38.
a) Find an IntG-derivation of ⇒ ¬¬[(A→B) ∨ (B→A)]
b) Apply the step-by-step algorithm of transforming Gentzen style derivations

into to transform a derivation from (a) into a natural derivation of formula
¬¬[(A→B) ∨ (B→A)].

Exercise 39.
a) Find an IntN-derivation of (¬A ∨ B)→¬(A ∧ ¬B)
b) Apply the step-by-step algorithm of transforming natural derivations into
IntG-derivations to transform a derivation from (a) into an IntG derivation
of sequent ⇒ (¬A ∨ B) → ¬(A ∧ ¬B). Don’t simplify the resulting Gentzen
style derivation.

Exercise 40.
a) Find a natural deduction derivation p→q " (p→r)→(p→q ∧ r)
b) Find a λ-term corresponding to this derivation.

Exercise 41.
a) Find Hilbert style derivation of A→C " A→(B→C).
b) Find internalization of this proof as a combinatory term.

Exercise 42. Find the normal forms of the following combinatory terms.
Types are suppressed for short, assume they all match properly, x, y, z are
variables.

a) s(ks)kx
b) s(ks)kxy
c) s(ks)kxyz
d) s(bbs)(kk)xyz, where b is s(ks)k.

Exercise 43. Untyped combinatory terms are built from untyped variables
x, y, z, . . . and two untyped constants k and s. There are two basic reductions
copied from the typed case:
kuv reduces to u
suvw reduces to uw(vw).
Show that strong normalization does not hold for untyped combinatory terms.

Exercise 44. Consider a system IntG+ which is obtained from IntG by
adding new axiom sequents ⇒ ¬¬A→A for all A’s.
a) Show that IntG+ is equivalent to the classical logic, i.e. Cl proves F iff
IntG+ proves ⇒ F .
b) Show that Cut rule cannot be eliminated in IntG+. Hint: check the
Disjunctive Property for Cut-free derivations in IntG+.

Exercise 45. a) Find an IntH-derivation of ((A→B)→B)→B " A→ (A→
(A→B)). Feel free to use the Deduction Theorem.

b) Internalize this derivation as a combinatory term, possibly using emulated
λ-abstraction. Don’t bother converting it into a pure combinatory format.

Exercise 46. Church numerals are λ-terms
0 = λsz.z
1 = λsz.sz
2 = λsz.s(sz)
3 = λsz.s(s(sz))
4 = λsz.s(s(s(sz)))
· · ·
Consider λ-term t = λxy.yx. Find normal forms of the following terms:
a) t · 2 · 1
b) t · 2 · n
c) t · m · n

Exercise 47. Which of the following is provable in S4? Provide a justifica-
tion.
a) !(!A → B)→(!A → !B)
b) (!A → !B) → !(!A → B)
c) !(!(A→!A)→A)→A

Exercise 48. Let
? = λabcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator);
$ = ??????????????????????????.
Show that $ is a fixed point combinator, i.e. that $F = F ($F) holds for all
λ-terms F .

Exercise 49. We know that with respect to Gödel’s translation

tr(F) = box each subformula of F

S4 corresponds to Int. Show that S5 corresponds to the classical logic Cl
with respect to the same Gödel’s translation:

Cl " F if and only if S5 " tr(F).

