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Brouwer-Heyting-Kolmogorov (BHK) semantics.

• a proof of A∧B consists of a proof of proposition A and a proof

of proposition B,

• a proof of A∨B is given by presenting either a proof of A or a

proof of B

• a proof of A→B is a construction transforming proofs of A into

proofs of B



Gödel’s modal logic of provability.

Gödel (1933) introduced the modal logic S4 as the system axioma-

tizing provability in classical mathematics:

Axioms and rules of classical propositional logic
!(F→G)→(!F→!G) Normality

!F→F Reflexivity
!F→!!F Transitivity

Necessitation Rule:
$ F

$ !F



Gödel’s translation tr(F) of the propositional formula F in the intu-
itionistic language into the language of classical modal logic:

tr(F) was obtained by prefixing every subformula of F with the
provability modality !.

Provides a proper embedding of the intuitionistic logic IPC into S4

Theorem [Gödel, McKinsey, Tarski]

IPC proves F ⇔ S4 proves tr(F).



Still, Gödel’s original goal of defining IPC in terms of classical prov-
ability was not reached, since the connection of S4 to the usual

mathematical notion of provability was not established.

The situation after Gödel’s paper of 1933 can be described by the

following figure where ‘↪→’ denotes a proper embedding:

IPC ↪→ S4 ↪→ ? ↪→ CLASSICAL PROOFS .



Provability semantics for modality

Gödel also considered the interpretation of !F as
F is provable in Peano Arithmetic PA

and noticed that this semantics is inconsistent with S4.

Indeed, !(!F → F) can be derived in S4. On the other hand,

interpreting ! as the predicate Provable of formal provability in
Peano Arithmetic PA and F as falsum ⊥, converts this formula into

the false statement that the consistency of PA is internally provable
in PA:

Provable (Consis PA) .



Gödel’s paper left open two questions

1. What is the logic of formal provability Provable?

‘a provability semantics without a calculus’
Was answered by Solovay (1976), who found the logic of formal

provability GL.

2. What is the precise provability semantics for S4?
‘a provability calculus without a semantics’

Was answered by the first author (1995) whose Logic of Proofs LP
provided a semantics of explicit proofs for S4 and hence formalization

of BHK-semanics for IPC.



Gödel’s ”explicit” format for provability

In his lecture in Vienna in 1938 Gödel mentioned a possibility of

building an explicit version of S4 with basic propositions ”t is a proof
of F”:

Proof (t, F)

This Gödel’s lecture remained unpublished until 1995. By that time
the full Logic of Proofs was already discovered by the first author.



Logic of Proofs LP: the language

Proof polynomials are terms built from proof variables x, y, z, . . .

and proof constants a, b, c, . . . by means of two binary operations:

application ‘·’ and choice ‘+’, and one unary proof checker ‘!’.

Using t to stand for any proof polynomial and S for any sentence

letter, the formulas of the Logic of Proofs are defined by the
grammar

A = S | A→A | A ∧ A | A ∨ A | ¬A | t:A .



Logic of Proofs LP

The standard axioms and rules of classical propositional logic
t:(F →G) → (s:F →(t·s):G) Application

t:F → !t:(t:F) Proof Checker
s:F →(s+t):F , t:F →(s+t):F Choice

t:F →F Reflexivity
$ c:A, where A is an axiom and c is a proof constant

− Constant Specification Rule



One of the basic properties of LP is its capability of internalizing its

own derivations:
if

A1, . . . , An $ B ,

then for some proof polynomial t(x1, . . . , xn),

x1:A1, . . . , xn:An $ t(x1, . . . , xn):B

Note that the Curry-Howard isomorphism covers only a simple in-
stance of the proof internalization property where all of A1, . . . , An, B

are purely propositional formulas containing no proof terms.



Realization of S4 in the Logic of Proofs LP

S4 is the forgetful projection of LP, i.e.,

1. The forgetful projection of LP is S4-compliant.

2. For each theorem F of S4 one can recover a witness (proof

polynomial) for each occurrence of ! in F in such a way that the
resulting formula Fr is derivable in LP.

Realization gives a semantics of proofs for S4.

S4 $ F ⇔ ∃r LP $ Fr



Derivation in S4 Derivation in LP

1. !A→!A ∨ B x:A→x:A ∨ B
2. !(!A→!A ∨ B) a:(x:A→x:A ∨ B)
3. !!A→!(!A∨B) !x:x:A→(a·!x):(x:A∨B)
4. !A→!!A x:A→ !x:x:A
5. !A→!(!A∨B) x:A→(a·!x):(x:A∨B)
6. B→!A ∨ B B→x:A ∨ B
7. !(B→!A ∨ B) b:(B→x:A ∨ B)
8. !B→!(!A∨B) y:B→(b·y):(x:A ∨ B)
9. !A∨!B→!(!A∨B) x:A∨y:B →(???):(x:A∨B)



Derivation in S4 Derivation in LP

1. !A→!A ∨ B x:A→x:A ∨ B
2. !(!A→!A ∨ B) a:(x:A→x:A ∨ B)
3. !!A→!(!A∨B) !x:x:A→(a·!x):(x:A∨B)
4. !A→!!A x:A→ !x:x:A
5. !A→!(!A∨B) x:A→(a·!x):(x:A∨B)
5′. (a·!x):(x:A∨B)→(a·!x+b·y):(x:A∨B)
5′′. x:A→(a·!x+b·y):(x:A∨B)
6. B→!A ∨ B B→x:A ∨ B
7. !(B→!A ∨ B) b:(B→x:A ∨ B)
8. !B→!(!A∨B) y:B→(b·y):(x:A ∨ B)
8′. (b·y):(x:A ∨ B)→(a·!x+b·y):(x:A∨B)
8′′. y:B→(a·!x+b·y):(x:A∨B)
9. !A∨!B→!(!A∨B) x:A∨y:B →(a·!x+b·y):(x:A∨B)



Provability semantics of LP

Interpretations respect Boolean connectives and

(p:F )∗ = Proof (p∗, F ∗).

Completeness theorem:
LP derives all valid logical principles in its language

The situation now can be described as

IPC ↪→ S4 ↪→ LP ↪→ CLASSICAL PROOFS .



From Proofs to Justifications

Plato: Knowledge ∼ Justified True Belief

Hintikka, et al:

F is known ∼ F holds in all possible situations.

Simplified approach leaves Justification off the picture. It allowed

to built an applicable formal theory of knowledge, but has had a
number of deficiencies, e.g., the Logical Omniscience Problem.

Justification Logic (grows from LP):

F is known ∼ F holds in all possible situations
and there is an adequate evidence for F .



Joining Implicit and evidence-based knowledge.

A. & N., 2004:

S4LP = S4 + LP + (t:F →!F) (or t:F →!t:F).

Multiple systems combining implicit knowledge ‘!F ’ and evidence-
based knowledge ‘t:F ’. A mathematical definition of Logical Omni-

science via proof complexity and a series of results showing that in
Justification Logic implicit knowledge is logically omniscient whereas

evidence-based knowledge is not logically omniscient.



Epistemic models for justifications (Fitting)

Model is (W, R, E, "), where

• (W, R) is an S4-frame;

• E is an evidence function: for each term t and formula F , E(t, F)
is a set of u ∈ W where t is a possible evidence for F . An evidence

function is monotonic
uRv and u ∈ E(t, F) yield v ∈ E(t, F)

and has natural closure properties that agree with operations of LP.

• u" t:F iff u"!F and u ∈ E(t, F).



Topological models for S4 (Tarski)

Naturally extends the set-theoretical interpretation of classical propo-
sitional logic. Given a topological space T = 〈X, Interior〉 and a val-
uation (mapping) ∗ of propositional letters to subsets of X, we can
extend ∗ to all modal formulas as follows:

¬A = X \ A∗; (A ∧ B)∗ = A∗ ∩ B∗;

(A ∨ B)∗ = A∗ ∪ B∗; (!A)∗ = Interior(A)∗.

A is valid in T (notation: T "A) if A∗ = X for any valuation ∗.
The set L(T ) := {A | F "A} is called the modal logic of T .

McKinsey and Tarski Theorem:
Let S be a separable dense-in-itself metric space. Then L(S) = S4.



Topological semantics for justifications - basic ideas

• based on Tarski’s topological semantics (!F )∗ = Interior(F)∗

• t’s denote tests (measurements); there is a test function M
that for each t and F specifies a set M(t, F) of ‘possible outcomes’
(not necessarily from F ∗);

• t:F ∼ ‘a set where test t confirms F’. This reading is supported
by the definition

(t:F )∗ = F ∗ ∩M(t, F) or (t:F )∗ = Interior(F ∗) ∩M(t, F)
depending on a system

• first consider systems w/o operations on tests.



Basic Testing System S4B0

S4B0 = S4 + (x:F →F).

In this system there are no any assumptions about tests; they don’t

even necessarily produce open sets of outcomes. The definition of
the test assertion is

(x:F )∗ = F ∗ ∩M(x, F)



Robust Testing System S4B1

S4B1 = S4 + (x:F →!F).

In this system, the test sets are still arbitrary (not necessarily open);
however, the test assertions are interpreted as

(x:F )∗ = Interior(F ∗) ∩M(x, F)



Robust Testing System S4B1

S4B2 = S4 + (x:F →F) + (x:F →!x:F).

This system corresponds to the full operation-free version of S4LP.
The test sets are open, the test assertions are interpreted as

(x:F )∗ = Interior(F ∗) ∩M(x, F)



Soundness and Completeness

All three systems S4B0, S4B1, and S4B2 are sound and complete with
respect to the corresponding classes of topological models. The

soundness proofs are straightforward. Completeness proofs go via
epistemic models which are then converted into topological spaces

with cone topology.



Soundness and Completeness

Theorem. S4B0, S4B1, S4B2 are complete with respect to the real
topology Rn, for each n = 1,2,3, ....

Main lemma (Slavnov, Bezhanishvili, Gehrke, Mints, Zhang)
There is an open and continuous map π from (0,1) onto the Kripke
topological space corresponding to a finite rooted Kripke frame.

Such a map π preserves truth values of modal formulas at the cor-
responding points. It now suffices to produce a finite rooted Fitting
counter-model for a given formula F and define the test function
M′(t, G) on (0,1) as

M′(t, G) = π−1M(t, G).
The resulted topological model is a (0,1)-countermodel for F . This
construction yields completeness with respect to the real topology
Rn, for each n = 1,2,3, ....



Introducing operations

A natural topological interpretation for the whole of S4LP.

Operation Test Function

t:(F →G) → (s:F →(t·s):G) M(s, F →G) ∩M(t, F) ⊆ M(s·t, G)

t:F → !t:(t:F) M(t, F) ⊆ M(!t, t:F)
s:F ∨ t:F →(s+t):F M(s, F) ∪M(t, F) ⊆ M(s+t, F)



Conclusions

Justification logics can be provided with a topological semantics

which reads justification assertions t:F as

test t supports F.

This semantics is a natural extension of the Tarski topological se-
mantics for the modal logic S4.


