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General Picture

We do not invent new rationality principles, but try rather to reveal what
was hidden in standard game-theoretical assumptions concerning rational
decision-making:

1) the player’s rationality yields a payoff mazrimization given the player’s
knowledge;

2) the standard logic of knowledge for Game Theory is Sb.

It happens that these principles lead to a meaningful mathematical model
which we outline in this paper.



What has been done?

1. Within this model, each game has a solution and rational players know
which moves to make at each node.

2. Uncertamty in games of pertect information results exclusively from
players’ different perceptions of the game.

3. In strictly competitive perfect information games, any level of players’
knowledge leads to the backward induction solution which coincides with
the maximin solution. The same result holds for the well-known centipede
game: 1ts standard ‘backward induction solution’ does not require any mu-
tual knowledge of rationality.



No probability 1n the picture

Knowledge-Based Rationality is different from other well-known approaches
for handling uncertainty i games:

von Neumann & Morgenstern (1944 ), which assumes known probability
distribution:

Savage (1972), which assumes known subjective probability distribution.

The KBR-model which we offer does not make any probabilistic assumptions
and models decision-making strictly on the basis of playvers’ knowledge.



Rationality: logical format

Player P’s rationality will be represented by a special atomic proposition
rP  — P s rational.’
Player P’s knowledge (or belief) will be denoted by modality Kp, hence
Kp(F) - ‘P knows (believes) that F.

In particular, Kp(7()) states that ‘player P knows (believes) that player ()
1s rational.’



Epistemic Logic for Game Theory

In Game Theory, it i1s usually assumed that knowledge modalities Kp
satisty postulates of the modal logic of knowledge S5:
Axioms and rules of classical logic:
Kp(F — G) NKp(F) — Kp(G), epistemic closure principle:
Kp(F) — F, factivity;
Kp(F) — KpKp(F), positive introspection:
—-Kp(F) — Kp(=Kp(F)), negative introspection;
Necessitation Rule: if F is derived without hypothesis, then Kp(F') is also derived.

In addition, we assume that rationality 1s self-known:

rA — Ku(rA). (1)



Highest Known Payoff

We consider games presented in a tree-like extensive form. Let, at a given
node of the game, player PP have to choose one and only one of moves
1.2.....m. and s; denote

si = P chooses i-th mowve. (2)
In particular, the following holds:

51 V.SQV VSm, Sj —7 /\_ISE'. (3)

i#]
Definition 1 For a given node v of the game, the corresponding player A.
and a possible move j by A, the Highest Known Payoff, HKP4(j) is the

highest payoff implied by A’s knowledge at node v, given 7 is the mowve
chosen by A. In more precise terms,

HKP4(j) = max{a

A Eknows at v that his payoff given s; is at least a}.




Correctness of HKP

Let G(a) be the (finite) set of all possible payoffs for A which are greater
than a. Then, the highest known payoft can be defined as follows: HKPA(j) =
a 1f and only if

K 4("A gets at least @ when choosing ;')

and
/\ —K (A gets at least b when choosing ;) .
beG(a)

Proposition 1 [Correctness of HKP| For each node of a finite game,
corresponding player A, and possible move 7 by A, there exists a unique

HKP4(7).



Baby example

Example 1 Suppose at a given node of the game. move 7 by A can be met
by three responses by his opponent:

Response 1, with A's payoft 10:

Response 2, with A's payoit 20:

Response 3, with A's payoit 30.
Suppose that the actual response 1s 2, which is not necessarily known to A.
So, the actual payoff tor A at node j 1s equal to 20.
If A considers all three responses 1, 2, and 3 possible, then HKP4(j) = 10.
If A learns for sure that 1 is no longer possible, then HKP4(j) = 20.
[f instead A learns that 3 is no longer possible, then HKP4(j7) = 10.




Best Known Move

Definition 2 Best Known Move for player A at a given node of the game
s a move J from 1.2..... m which has the largest highest known payoff.

HKP4(j). In a more formal setting, j is a best known move for A at a
given node if for all i from 1.2,....m

HKP,(j) > HKPA(i) .

By
kbesta(J)

we denote the proposition
‘7 18 the best known move for A at a given node.’
In a yet even more formal setting, kbests(j) can be formally defined as

kbesta(j) = /\{HKPA(j) > HKPa(i)] . (4)

1
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Simple Game Tree

u(A)

o\
VANAN

Game 1. A 1s not aware of B's and (s rationality and considers any

move for B and C possible.

Game 1II. A knows that C' 1s rational, but does not know that B is
rational.

Game II1. A knows that both B and C' are rational.
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Game I

N
VANAN

In Game 1.

HKP4(v) =0, HKPa(w)=1.

kbestq(w) .

A’s actual pavoft at u 1s 2.
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Game 11

/\
VANAN

HKP4(v) = 0. HKP4(w)
kbestq(w) .

In Game 11.

A’s actual payott at u 1s 2.

— 9.
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Game 11

/\
VANAN

HKPA(L’) = 3. HKPA("{U)

In Game III.

kbesta(v) .

A’s actual pavoft at u 1s 3.

:2?
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Existence Theorem

Theorem 1 A best known mowve exists at each node and is always known
to the player:

1) If kbests(7) holds, then K |kbesta(7)].

2) If =kbests(j) holds, then K 4|—kbesta(7)].

Corollary 1 At each node, there is always at least one best known move
kbesta(1) V kbesta(2) V ...V kbestq(m) .

If, in addition, all payoffs are different, the best known mowve is unique

kbesta(j) — /\ —kbesta(i) .
i#]
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Rational decision: verbal accounts

For simplicity’s sake, we assume here that all payoffs are different and we
work under the assumptions of Corollary 1.

1. Rational player A always plays the highest payoff strategy given A's
knowledge (Brandenburger, lectures).

2. “ |A] rational player will not knowingly continue with a strategy
that yields him less than he could have gotten with a different strategy.”
(Aumann, [5]).

3. “..a player is irrational if she chooses a particular strategy while
believing that another strategy of hers is better.” (Bonanno, [9])

4. For a rational player . “there 1s no strategy that ¢ knows would have
vielded him a conditional payoft ... larger than that which in fact he gets.”
(Aumann, [5))

5. Rational player A chooses a strategy it and only 1f A knows that this
strategy vields the highest pavott of which A 1s aware.

16



Rational decision: formal accounts

The natural formalization of 1 1s the principle
rd —  |kbesta(j) — sl .
The natural formalization of 2 1s the principle
rA —  |kbests(j) — —s;|, when i+ j . (6)
The natural formalization of 3 is the principle
kbesta(7) A sil, — —rA, when i # j . (7)
The natural formalization of 4 i1s the principle
rA — |s; — —kbests(7)], when i # j . (8)
The natural formalization of 5 is the principle

rA —  |kbesta(j) <= s;] . (9)



Rationality Thesis

Theorem 2 Principles (5-9) are equivalent.

Definition 3 [Rationality Thesis]| Principles (5-9) are assumed to be
commonly known.

The atorementioned Rationality Thesis provides a method of decision-
making under uncertainty: a rational player at a given node calculates
his highest known payoff and his best known move and chooses accord-
ingly. We propose calling such a decision-making method knowledge-based

rationality, KBR.

Definition 4 By a KBR-solution of the game, we mean the assignment of
a move to each node according to the Rationality Thesis (Definition 3).
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There 1s always a solution...

Theorem 3 Each perfect information game with rational players who know
the game tree has a KBR-solution. Furthermore, if all payoffs are different,
then such a solution is unique, each player knows his move at each node,
and therefore the game s actually played according to this solution.

Proof. It suffices to check that A knows s;, which describes A’s best move.
By Rationality Thesis:

Ka{rA — |kbests(j) — s;|} .

J

KalrA] — {Kalkbesta(7)] — Kalsj]} -

By self-knowledge of rationality, K4|rA|. Let j be the KBR-move. Then,
kbesta(j) .
By Theorem 1, A’s best known move 1s known to A, hence

Kalkbesta(j)] and Kyls;| .
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Actual Payoffs may be higher...

Definition 5 Actual Payoff for a given player X at a given node v,
APx(v).

s the payoff which X wins if the game is played from v according to the
KBR-solution of the game.

It 1s easy to see that actual payoffs at each node are greater or equal
to the best-known payvofts since otherwise, a corresponding player would
‘know’ the false statement ‘he 1s guaranteed a payoft greater than the one
he 1s actually getting.’
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Solving Game |

/\
VANAN

Game I: A is ignorant of B and C"s rationality.
HKPs(v) =0, HKPjp(w)=1, HKPs(u) =1

the KBR-solution: A plays ‘right,” B and C play ‘left.’
Actual pavofts for A, B, and C"

APA?BF(?('EL) — 2 1, 1, APA?B,C('H) = 3, 3, 3, AP‘;LB:C('EU) — 2 1, 1.
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Solving Game 11

N
VANAN

Game 11I: A knows that (' 1s rational.

HEKPj(w) =2, HKP4(v) =0, HKPs(u) = 2;

the same KBR-solution and the same actual payoffs as in Game 1.
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Solving Game [11

/\
VANAN

Game III: A knows that both B and C' are rational.
HEKPj(w) =2, HKPs(v) =3, HKPs(u) = 3;

the KBR-solution: A, B, and C play ‘left.’
Actual payofts

APA:BFQ('EL) — 3, 3, 3, i‘{P‘q:B!C('E) — 3, 3, 3, APA:B:C('KU) — 2, 1, 1.
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The Centipede Game

A 3B B s
[ ¥ [ W g
2.1 1.4 1.3 3.6 6,5

The classic backward induction solution (BI) predicts playing down at
each node. Indeed, at node 5. playver A’s rational choice i1s down. Player B
1s certainly aware of this and. anticipating A’s rationally playing down at
5, would himself play down at 4. Player A understands this too. and would
opt down at 3 seeking a better pavoft. etc. The backward induction solution
1s the unique Nash equilibrium of this game.
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Epistemic analysis of Centipede

The question we try to address now 1s that of finding solutions for the
centipede game under a reasonable variety of epistemic assumptions about
players A and B. We assume common knowledge of the game tree and
concentrate on tracking knowledge of rationality. The classical analysis
states that i1t takes common knowledge of players’ rationality (or, at least.
as many levels of knowledge as there are moves in the game) to justify
backward induction in perfect information games, with the centipede game
serving as an example. We will try to revise the perception that stockpiling
of mutual knowledge assumptions are needed for solving the centipede game.

25



KBR vs. Bl

There 1s a unique KBR-solution to the centipede game for each set of
epistemic states of players. We show that each of them leads to the backward
induction solution: players choose ‘down’ at each node.

Within the Bl-solution, the players actually avoid making decisions un-
der uncertainty by assuming enough knowledge of rationality to know ex-
actly all the opponent’s moves. In the KBR-solution, the players make
decisions under uncertainty by calculating their highest known payofts and
determining their best moves. So the Bl-solution is a special extreme case
of the KBR-solution. For the centipede game, however., both methods bring
the same answer: plaving down at each node.
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No extra knowledge 1s needed

Consider a natural formalization of the centipede game 1in an appropriate
epistemic modal logic with two agents A and B and rationality propositions
rA and rB.

rA = A is rational.

rB = B s rational.

a; = ‘across’ 1s chosen at node 1.

d; = ‘down’ 1s chosen at node 1.

Theorem 4 In the centipede game, under any states of players’™ knowledge,
the KBR-solution coincides with the Bl-solution, hence rational players play
the backward induction strategy.

27



Just don’t do anything stupid

Proof. The proot consists of calculating the best known move at each
node. Note that since epistemic states of players at each node do not contain
tfalse beliefs. the actual moves of players are considered possible, otherwise
a corresponding plaver would have a false beliet that some actual move 1s
impossible.

Node 5, player A. Obviously,

kbest4(‘down’) holds at node 5.

Indeed. A knows that playing ‘down’ vields 6, whereas playing ‘across’ yields
5. Since A 1s rational, ds.

Node 4, player B. Obviously HKP(‘down’) = 6. On the other hand.,
HKP(‘across’) = 5, since B considers d5 possible. It B would deem d;
impossible, B would know —d5, which 1s false and hence cannot be known.
Theretore

kbestp( ‘down’) holds at node 4.

Since B 1s rational, dy.

28



Just don’t do anything stupid

Since A 1s rational, ds.
Node 2, player B. HKP(‘down’) = 4, HKP(‘across’) = 3, since B con-

siders d3 possible. Hence
kbestp( ‘down’) holds at node 2.

Since B 1s rational, d>.
Node 1, player A. HKP(‘down’) = 2, HKP('across’) = 1, since A consid-

ers ds possible. Hence
kbest4( ‘down’) holds at node 1.

Since A 1s rational, dj. O
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Just don’t do anything stupid

In this solution, the players calculate their best known moves without
using any epistemic assumptions about other players. It so happens that
this K BR-solution comcides with the Bl-solution, since the worst-case in
the centipede game 1s exactly the Bl-choice at each node.

This theorem establishes that in the centipede game, the level of knowl-
edge of players does not matter: any states of knowledge of players lead to
the same solution. ‘down at each node.’
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Strictly competitive games

A two-person game 1is called strictly competitive if for any two possible
outcomes (histories) X and Y, player A prefers X to Y if and only if player
B prefers Y to X. Using standard notation (cf., for example, [18]) for
preference relation of player P, =p. we can present this as

X=,Y & Y=pX. (10)

Since possible outcomes 1n extensive-form games are normally associated
with payofts at terminal nodes, we can reformulate (10): for each possible
outcomes my, n; and mao, no.

my <mo & n9 <nq. (11)

Theorem 5 In strictly competitive games of perfect information, under any
states of players’ knowledge, the KBR-solution coincides with the maximin
solution and with the Bl-solution.
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Nested knowledge matters!

14  2B) 34

=~ = 3.3
/ U \
2.9 1.1 0,0
Game I: both players are rational
rA and rB (12)

but neither K4(7B) nor Kg(rA) hold: both A and B consider possible any
move by their opponent at any node. Let Op(F') stand for =K p(—=F'). Then

Oplag) AN <p(dz) and & 4(as) A< a(ds) . (13)

Game [ is defined by the game tree in Figure 1, rationality of players (12),
and epistemic conditions (13).
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Solving Game I

A 2B 34
/ / W
2.2 1,1 0,0

As a rational playver. A plays ‘across’ at node 3. However, at node 2, B
considers 1t possible that A plays ‘down’ at 3. Therefore,

HKPg(‘across’) =0 , whereas HKP4( ‘down’) =1,

and B chooses ‘down’ at 2. Likewise, by (13), A considers either of ay and
dy possible. Therefore, at root node 1, A chooses ‘down.” The solution of
the game 1s

{17.1, &'7.2, g .
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Game 11

Game 1I: level 1 mutual knowledge of rationality 1s assumed:
Ka(rB) and Kpg(rd) ., (14)

but neither KpK4(rB) nor K4Kpg(rA). In particular, A does not know
that B knows that A plays ‘across’ at 3, or, symbolically.

<>A<>B(d3) . (15)

Game II is defined by epistemic conditions (14) and (15).
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Solving Game 11

A4 2B 34 4,
v y \
2.2 1,1 0,0

A plays ‘across’ at node 3, hence a3. B knows that A, as a rational
player, chooses ‘across™ at 3, 1.e., B knows that a3. As a rational player, B
chooses ‘across’ at 2, hence as.

At node 1. A considers it possible that B considers d3 possible. A knows
that B 1s rational, hence A considers it possible that B plays ‘down’ at 2:

HKPx(‘across’) = 1 ,whereas, by the game tree, HKP4(‘down’) = 2 .

As a rational player. A chooses ‘down,” hence d;. The solution of Game II
1s represented as
dl: o, gz .
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Game 111

A 3B 34 5
W ¥ ¥
2.2 1,1 0,0

Game III: Common knowledge of rationality is assumed. This level of
knowledge is already sufficient for backward induction reasoning. Indeed, A
plays ‘across’ at node 3, B knows that A as a rational player chooses ‘across’
at 3. hence B chooses ‘across’ at 2. A knows that B knows that A plays
‘across’ at 3, hence A knows that the best known move for B 1s ‘across.’
Moreover. since A knows that B 1s rational, A knows that B plays ‘across’

at node 2. Therefore. the best known move for A at 1 is ‘across,” hence A
chooses "across’ at 1. The solution of Game 111 1s

ay., do, Ay .
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Anti-Centipede Game

It 1s clear how to generalize the anti-centipede game to any finite
length mn such a way that a shift from solution ‘down’ to solution ‘across’ at
node 1 happens only at the nested depth of mutual knowledge ot rationality
which 1s equal to the length of the game.

14 2B 34  4B) 54 55
i i i | i
4,4 3,3 2,2 1,1 0,0
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Knowledge of the Game

We claim that in Games I and 11, players A and B do not have
knowledge of the corresponding game in its entirety. Indeed. the
complete description of a game includes

1) a Game Tree, which is commonly known;

2) Rationality: propositions rA and rB are assumed true (but not neces-
sarily assumed mutually known).

3) Epistemic Conditions £ describing what is specifically known by play-
ers, 1n addition to general knowledge from 1 and 2.

Knowledge of the game consists of knowing 1. 2, 3 and basic mathematical
facts, together with whatever follows from them in the logic of knowledge.
E.g., each player knows that he is rational: K4(7A), KAK4(7rA), etc.
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Knowledge of the Game I

2.2 1,1 0,0

In Game I, £ contains condition =K pg(az). From this we can logically
derive =K p(rA4).

As we see, A knows 1A, since K4(rA) holds, but B does not know rA,
since Kg(rA) does not hold. Therefore, A and B have a different under-
standing of Game I, and B's knowledge 1s not complete.

39



Knowledge of the Game 11

1(4) 2(B) 3(4)

2.2 1,1 0,0

In Game II, proposition Ky4Kpg(rA) does not hold. On the other hand,
we conclude

KBKB(?‘A) .

by positive introspection of Kp. Therefore, B knows Kg(rA). However, A
does not know Kpg(rA), since KyKpg(rA4) does not hold. Again, players A
and B have different accounts of the rules of Game 11.
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Knowledge of the Game III

Game 11l 1s mutually known to its players A and B 1n its entirety be-
cause the game description i1s common knowledge. Indeed, in Game 111, the
complete description includes

1) the Game Tree (commonly known);

2) Rationality: rA and rB:;

3) Epistemic Conditions: £ = Common Knowledge of Rationality.
Since, for each player P.

Common Knowledge that F — Kp(Common Knowledge that F), (16)

A’s and B’s knowledge of Game 1II is complete. Indeed, A and B each
know the Game Tree, which 1s common knowledge. A and B also know
Rationality, which 1s common knowledge. Finally, A and B both know
Epistemic Conditions £ because of (16).
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Full knowledge 1s power

Proposition 2 Any wntelligent agent (observer) who knows the game in
full, knows the KBR-solution of the game and actual payoffs.

Indeed, suppose B’s best known move 1s 7. then B concludes
‘Epistemic State of B" — Fkbestg(j) .
The laws of logic are known to each intelligent agent, hence:
K 4| ‘Epistemic State of B —  kbestg(j)] .

K| ‘Epistemic State of Bl —  Kal|kbestp(j)] .

By Rationality Thesis.
KalrB — (kbestp(j) — sj)| .

KalrB] — (Kyl|kbestp(j)] — Kals;]) -

Since A knows the epistemic state of B and Rationality, K as;].
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What 1s the game we are playing?

Definition 7 We say that A is certain at a given node if A knows KBR-
solutions for subgames at each subsequent node.

Corollary 2 Any player who knows the game in full is certain at each node
of the game.

Proposition 3 In a Pl game, certainty at each node vyields the Bl-solution
which coincides with the KBR-solution.

Proof. Bv backward induction. At pre-terminal nodes, all players move
rationally, which 1s both a KBR- and Bl-solution. If a player at a given
node v knows KBR-solutions at all later nodes, he knows actual payotts and
his KBR-move at v coincides with the Bl-move. ]

Uncertamty i PI games occurs only because players do not know the
game in full.
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Are we playing the same game?

Definition 8 For players A and B, by iterated rationality assertions
IR, we understand the set of propositions of the sort ‘A knows that B knows
that A knows ... that A is rational’:
IR = {rA. rB.

KB(?‘A), K,:i(?’B)

KAKB(T‘A), KBKA(T‘B),

KBKAKB(?‘A), KAKBKA(?‘B),

KAKBKAKB(?‘A), KBKAKBKA(?‘B),

This definition naturally extends to more than two players.

Theorem 6 If all players in a PI game are rational and have the same
knowledge of iterated rationality, then there is no uncertainty in the game.
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Are we playing the same game?

Lemma 3 If players have the same knowledge of iterated rationality, then
each of them knows the whole set IR of iterated rationality assertions.

Indeed, since A 1s rational, A holds. Since the rationality of A is self-known.
rA — Ku(r4),
Ka(r4) .

By assumptions, B knows the same ZR assertions as A, in particular,
Kp(rA) .

By positive introspection of B’s knowledge.

KBK B(?‘A) .
which means that Kg(rA) is known to B; by assumptions, it is known to A
as well:

KaKp(rA) .
etc.
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Are we playing the same game?

Now proceed with the usual backward induction reasoning to show that
at each node, the plaver knows all KBR-moves and actual payofts at all later

nodes. At pre-terminal nodes, the p

layers move rationally according to the

(Game Tree. At the next nodes moving towards the root, players determine

the moves of plavers at the previous nodes using level 1 mutual knowledge of

rationality. At the next layer of noc
mutual knowledge of rationality to d

es towards the root, players use level 2
etermine all the moves at the successor

nodes. etc. The only epistemic cond

1tion which 1s needed for the backward

induction reasoning at a node of depth n 1s level n mutual knowledge of
rationality, which 1s guaranteed by Lemma 3.
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Rationality assertions are special

It follows from the proof that to achieve complete certainty in a given
came of length n, 1t 1s sufficient for players to agree on a finite set of iterated
rationality assertions with nested knowledge depth not exceeding n. Such
an agreement 1s only possible when all iterated rationality assertions of
nested knowledge depth not exceeding n are actually known to all players.
We can formulate the same observation in a dual manner: if a player faces
uncertainty in a perfect information game. then there should be an iterated
rationality assertion of nested depth not exceeding the length of the game.
which 1s unknown to the player.
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Aumann’s Theorem on Rationality

In Pl games, common knowledge of rationality vields backward
induction

casily follows from Theorem 6 and Proposition 3. Indeed, common knowl-
edge of rationality immediately vields that each plaver knows the whole set
of 1terated rationality assertions Z'KR.

Altogether, Corollary 2 and Theorem 6 reveal that different and incom-
plete knowledge of the game form the basis for uncertainty in pertect infor-
mation games. If uncertainty occurs in a perfect information game, players
have different knowledge of the game. The player who faces uncertainty
does not have complete knowledge of the game.
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Other Epistemic Models

The logic of knowledge approach adopted m this paper provides a flexible

and competitive apparatus for specifying and solving games. It has cer-

tain advantages over other well-known approaches for tracking epistemic

conditions in games, such as protocols and possible paths (|14]), and set-

theoretical Aumann structures (|4]). In particular, logical language can deal

with incomplete specifications of (possibly infinite) state spaces, which are

vet sufficient for solving the game.
and set-theoretical approaches, on t
plete specification of state spaces. wl
all possible.

The aforementioned model-theoretical
he other hand, require a priori com-

rich may happen to be too hard if at
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What do we actually assume?

We offer a specific, logic-based approach. In our model. we try to accom-
modate the intellectual powers of players who are considered not to be mere
finite-automata payoff maximizers but rather intellectual agents capable of
analvzing the game and calculating payotts conditioned to the rational be-
havior ot all players. In particular, we assume that players have common
knowledge of the laws of logic, foundations of knowledge-based rational de-
cision making, and that they follow these principles. We believe that such
assumptions about the intellectual powers of plavers are within the realm
of both epistemic and game-theoretical reasoning.
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Do we need S5?

The full power of the logic S5 was used in Theorem 3, which states that a
K BR-solution always exists and that rational and mtelligent players follow
this solution. However, 1n specific games, KBR-solutions can be logically
derived by much more modest epistemic means. For example, in Game 1
of Section &, 1t suffices to apply negative introspection to epistemic con-
ditions (13) to derive the KBR-solution and to conclude that players will
follow this solution. Roughly speaking, it suffices to add to the game spec-
ification that epistemic conditions (13) are known to corresponding players
and to reason 1n the logic S4, which 1s S5 without the negative mtrospec-
tion principle. These considerations could appeal to epistemologists and
modal logicians who might have reservations concerning the use of power-
ful epistemic principles such as negative introspection. Using S4 has some
additional advantages, e.g.. it renders the reasoning monotonic m a logical
sense, admits natural evidence analysis in the style of [1, 2| where one could
hope to produce verified best known strategies for players, etc.
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Learning

It 1s obvious that more plaver knowledge at a given node vields a greater
highest known payoftf. However, a greater actual payvoff 1s not guaranteed
at this node, which might depend on other plavers’ choices.
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What’s next?

Studying specific games in their entirety, with epistemic conditions.
Incorporating probabilities into the K BR-model.

Justification-tracking in game-theoretical reasoning. itroducing tools
to control logical omniscience hidden i the K BR-approach.

Capturing the process of acquiring knowledge during games.
Incorporating other epistemic notions ito the model.
Developing a theory of decision-making based on beliefs.

Studying logical properties and new principles of Rationality.
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