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In this talk

The knowledge-based rational decision model (KBR-model)
suggests following a strategy yielding the highest payotff which
the agent can secure to the best of his knowledge. Special
(extreme) cases of KBR 1n perfect information (PI) games are the
backward induction solution (assumes common knowledge of

rationality), and the pure maximin solution (assumes i1gnorance of
each other rationality).

In this talk, we prove a conjecture by A. Brandenburger that in PI
games each KBR-path 1s a Nash path. Therefore, Nash equilibria

capture KBR-solutions for all epistemic states of rational players,
but cannot distinguish between them.




Game-theoretical assumptions

Our model of rational decision making uses standard game-theoretical as-
sumptions, e.g., Harsanyi’s Maximin Postulate ([6]),

If you cannot rationally erpect more than your mazrimin payoff.
always use a mazximin strateqgy,

and the traditional postulate of rational decision-making:

A rational player chooses a strateqy that yields the highest payoff
to the best of his knowledge.

As noted in [1, 2|, if a rational player operates in a non-probabilistic set-

u
d

ting and bases his decision on knowledge rather than luck, guesswork,
sudden opponent cooperation or error, etc., the aforementioned postulates

lead to the same mathematical model of decision making that we call the

Knowledge-Based Rational decision model (KBR-model).




Beliet vs. Knowledge

Though Game Theory often considers decisions based on beliefs rather
then knowledge (cf. [4]), a special theory of knowledge-based decision mak-
ing looks to be approprate as well. The principal difference between knowl-
edge and belief 1s the factivity property of knowledge that beliefs do not
necessarlly possess. In some situations, players seem to make decisions
on the basis of their knowledge and not merely on their beliefs: military,
high-stakes commercial, juridical decisions, etc. Furthermore, according to
commonly accepted properties of knowledge such as positive and negative
introspection! ([5]), the decision-maker is aware of what he knows and what
he does not know and hence 1s capable of distinguishing what he actually
knows from what he merely believes without actual knowledge.




Highest Known Payoff vs Maximin

K BR suggests following a strategy that yields the highest payotf the agent
can secure to the best of his knowledge. Equivalently, within the KBR

approach, a rational player chooses a maximin solution over all strategies of

others the player deems possible. These two seemingly different approaches
produce the same result: a maximin choice over the set of all strategies a

player considers possible (i.e., that cannot be ruled out as impossible) is a
strategy vielding the highest guaranteed payofif to the best of that player’s
knowledge.

Indeed, let m be the maximin payoff at a given node v over the set
of all strategies that a player ¢ considers possible. Then ¢ knows
a strategy that guarantees him payoff m. On the other hand, for
any other payoff p > m, 7 knows that there 1s no strategy by 1
that could guarantee him payoff p. Therefore, m 1s the highest
payoff that ¢ knows he has a strategy for getting and he cannot
rationally expect a payoft greater than m.




Rationality Postulates

1. A rational player chooses a strategy vielding the highest payoff the
agent can secure to the best of his knowledge. Equivalently, a rational
player chooses a maximin solution over all strategy profiles the player

deems possible.

2. Postulate (1) is commonly known and accepted by rational players.

Postulate (1) is the epistemically explicit form of Harsanyi’s Maximin Pos-
tulate. Similarly, (2) is merely Harsanyi’'s Mutually Expected Rationality
Postulate ([6]) expressed in epistemic language.




Strategies, profiles, paths

In this paper, we consider generic extensive-form perfect information games
which include specification of the relevant states of knowledge for each
player. In particular, for each player i, 1t 1s specified which strategy pro-
files o are known to be impossible by player 7. All other profiles are called
epistemically possible for player i. By the factivity property of knowledge,
no player 1s playing a strategy known to be impossible by any of the players.
A B the only strategy which 1s

. =~ o 2,1 epistemically possible 1s
lacrossy, acrossg |

1f2 0.0 which happens to also be the
| | backward induction solution.

Figure 1: Game One, rationality is commonly known.




each player considers each strategy
of the other player possible.

B knows that he 1s playving acrossg.
The epistemically possible

0,0 strategy profiles for B are
rationality is not mutually known.

{ downy, acrossg}, {acrossy, acrossg}.

Player A considers either strategy by B possible and cannot rationally ex-
pect to get a payoff greater than 1 if he plays acrossy. By Rationality
Postulate 1, A cannot choose acrossy. Therefore, for A, the epistemically

possible strategy profiles are

{downy, downg}, {downy, acrossg}.

Note that though there 1s more than one strategy profile epistemically possi-
ble for each player, A and B each have a unique, epistemically possible strat-
egy, namely downy for A and acrossg tor B: we call them K BR-strategies.

the KBR-path 1s downy.




Subgames

For each node v of game G, a subgame G, 1s determined by the rooted
subtree with root v: epistemically possible strategy profiles for ¢ 1n &G, are

epistemically possible strategy profiles for 7z in game G relativized to the
nodes from the subtree with root v.
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Figure 3: Subgame G, of game G.




KBR strategy profile

Lemma 1 [1, 2] At each node of a generic perfect information game, there
is a unique move (called a KBR-move) by the corresponding player that

yields the highest payoff that player can secure to the best of his knowledge
(called highest known payoff).

Corollary 1 In a generic game with rational players, there is a unique
KBR-move at each node.

Definition 1 A KBR-stategy for a given player 1 is a collection of KBR-
moves at nodes where 1 makes a move.

Corollary 2 For each generic game with rational players, there is a unique
K BR strateqy profile and players actually play this profile.




KBR view of the game

These observations lead to the following informal picture of epistemically
possible strategy profiles for each rational player A; here 5 1s any player
other than A. At a node at which A makes a move, only the KBR-move 1s

A, unique epistemically possible move B, ‘many’ epistemically possible-for-A moves
L

L
Figure 4: Strategy profiles that (rational) player A considers possible.

epistemically possible for A. At a node at which some other player makes
a move, A may consider multiple moves as epistemically possible. All epis-
temically possible strategy profiles for A are constituted from A’s unique

K BR-strategy o4 and strategies by others considered epistemically possible
by A.

Corollary 3 [1, 2] The real payoff for each player at a given node is greater
than or equal to the highest known payoff at this node.




BI and Maximin are special cases

Pure maximin strategy for a given player ¢ corresponds to the reading of a
game In which 7 has no imformation whatsoever about other plavers’ epis-
temic states. Then 7 considers all moves by opponents epistemically possible.
Under these conditions, pure maximin 1s a special case of KBE.

Another special case of the KBR-solution 1s given by the backward in-
duction solution Bl under Aumann’s conditions of common knowledge of
rationality (|3]). In this case, each player has sufficient information to ex-
actly determine his opponents’ move at each node. For each player, there
1s only one epistemically possible strategy profile: the K BR-solution of the

game.




Each KBR-path 1s Nash

KBR strategy profile 18 not necessarily a Nash profile.
A B The KBR strategy profile 1s

® - =21

o = {downy, acrossg },
and the K BR-path 1s
1:2 []:r{:]. P = dﬂwﬂ_q.
rationality is not mutually known. o 1s not a Nash profile

/! : /
o = {across,, acrossg} yields A’s payoff 2.

On the other hand, there 1s a Nash strategy profile
0" = {downy, downg}

that has the same path P as o.




Theorem 1 In a PI game with rational players, the KBR-path is a Nash
path.

Proof. Induction on maximal game length n(G). The base: n(G)=1. Then
the K BR-path consists of one rational move which constitutes a Nash profile.
The Induction Hypothesis: suppose the theorem claim holds for all games
with length less than k.
The Induction Step. Consider a PI game G 1n an extensive tree-like form

such that n(G) = k. Let P be its KBR-path, A be the player who is making

a move at root node r, and 1,...,m be immediate successors to r. By
(+,,,. we denote subgames of G with roots at 1,...,m respectively.

r
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Let b be the highest known payoft for player A at root node r (cf. [1]),
1.e., the highest payoftf that A knows he can secure at r:

b= HKP 4(r).

Then for any strategy o4 by A, there 1s a strategy profile ¢ containing o4
and epistemically possible for A such that A’s payoff of o, U4 (o) is less than
or equal to b. By Corollary 3, A’s payoff on path P, Ux(P) is greater than
or equal to b.

Without loss of generality, assume that A’s root move is (r, 1), and that
the rest of PP, P occurs within ¢;. By Lemma 2, P 1s the KBR-path n
GGi. By the Induction Hypothesis, since n(Gi) < k, P, 1s a Nash path in
(G4, 1.e., there is a Nash strategy profile ! such that P; is its path in Gj.
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Our goal now 1s to extend o' to a Nash strategy profile ¢ for all of G

without changing 1its path F. For this, we have to define the moves of each
player at nodes other than those from Gj.

At root node r, A’s move is (r, 1) as suggested by P: make it part of o.
It now remains to define moves at all nodes of games G»,....G,,.

Pick subgame G;, i = 2, ....m and consider the following auxiliary ‘max-
1min game’ on the same tree. In this maximin game, player A tries to win
more than his highest known payoff b, and all other players are playing
against this goal. Label a leaf S (for Success) if A’s payoff at this leaf is
greater than b, and F (for Failure) otherwise. Backward induct to label all
other nodes of (G; and define moves for each node v of (G;.




Case 1. A makes a move at node v, and all immediate successors to v

are labeled F. T

1en label v as F and pick an arbitrary move for A at v.

Case 2. A makes a move at node v, and there 1s an 1immediate successor

to v that 1s label
one of 1ts 1immed

ed S. Then label v as S and pick a move for 4 from v to
1ate S-successors.

Case 3. A player other than A makes a move at v, and there 1s an

immediate successor to v labeled F. Then label v as F and pick a move

from v to one of

1ts 1immediate F-successors.

Case 4. A player other than A i1s making a move at v, and all immediate

successors to v are labeled S. Then label v as S and pick an arbitrary move

at v.
Let us denote

The following

,-:Jr:‘f4 the strategy by A, and o' 4 the collection of strategies
by all other players in the maximin game on G;.

lemma shows that A cannot win the maximin game.

Lemma 3 The root node © of GG; is labeled F .




Lemma 3 The root node i of GG; is labeled F'.

Proof. Since b is the highest known payoff for A at the root node, given o',

there should be a collection 6 , of strategies for other players in G; (deemed

possible by A) such that A’s payoff of the profile {¢,d" ,} is less than or
equal to b. Let P’ be the path of {¢%,,6' ,} in G;. We claim that each node
of P’ is labeled F. Backward induction on the length of P’. The leaf of P’
1s labeled F since it indicates A’s pavoff on P’ which is not greater than b.
Consider a node v of P’ whose immediate successor in P’ 1s labeled F. If v
is an A-node’, all immediate successors to v in G; are labeled F, hence v is

labeled F. If v is a non-A-node?, v is labeled F as well. So all nodes of P’
are labeled F, including the root node i of G,. O

Now we define the desired strategy profile ¢ on GG;-nodes:

For each i = 2,...,m, o restricted to G;-nodes coincides with {cr_f_l:cri__q}.

o’s path 1s P since the first move of o is (r,1)
and the rest of the path 1s F;.




Lemma 4 o is a Nash strategy profile.

Proof. Present o as a collection of A’s strategy o4 and non-A-strategies

O_4A.
Players other than A cannot mmprove their payoft by unilaterally dewviat-
ng from o_ 4 given o 4. Indeed, changes outside G; do not alter the outcome.

Changes mside ; cannot 1improve the payoff since within G, ¢ 18 a Nash

strategy profile.
Fix o_4 and consider an arbitrary strategy o/, for A.

Case 1. The first move of ¢/ 1s (r,1). Then the consequences of o/,
are lmited to changes mn A's strategy within ; that cannot yvield a better

payofl for A, since ¢ 1s a Nash pmﬁ]e on Gi.
Case 2. The first move of ¢/, is (r,2) with some i = 2,...,m. Suppose,
en route to contradiction, that

U({c'y,0_4})=b >0




Lemma 4 o is a Nash strategy profile.

Case 2. The first move of ¢'; is (r,7) with some 7« = 2,...,m. Suppose,

en route to contradiction, that

U({o'y,o_4})=b >0

and let P’ be the path in G; corresponding to {¢';,0_4}. By backward
induction on the node depth, we show that all nodes of P’ are labeled S.
Base: the leaf node of P’ is labeled S since P’ delivers A’s pavoff b > b.
Let v be a node in P’ whose immediate successor in P’ 1s labeled S. If v 1s
an A-node, then v should be labeled S by definition of the labeling process.
If v 1s a non-A-node, then P"”s move at v 1s made according to o, which

indicates that all immediate successors to v in G; are labeled S. hence v 1s
labeled S as well.

We have arrived at a contradiction to Lemma 3 that states 7 1s labeled
F. This proves Lemma 4. O




As an easy corollary to this theorem, we conclude that each backward
induction path 1s a Nash path. Indeed, apply Theorem 1 to the variant
of the game 1m which common knowledge of rationality 1s assumed. For
such games, the resulting Bl-path will be the KBR-path. By Theorem 1.
this path 18 Nash. Likewise. each pure maximin path 1s Nash as well, since
the maximin profile 1s the K BR-profile with players 1ignorant of each others’
rationality.

(4 2B)  34)  4B)  5(4)
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1.0 0,2 3.1 2. 4

Corollary. In the centipede game under all epistemic
states of players the solution path is down at the first node.

Proof. There 1s a unique Nash path.




None of the strategies 1s

0,0 strictly dominating, hence

rationality is not mutually known. the IU strategy profiles here are

{downy, downp}, {acrosss, downgp}, {downa,acrossp}, {acrossa,acrossp}.

NE strategy profiles
{downy, downg} and {acrossy, acrossg},

and two NE-paths

downy and (acrossa, acrossg).

one KBR-path that happens to be the MAXM-path as well: dowmna.

There 1s one Bl-path (acrossy, acrossg),
that 1s also the KBH-path mm a version of Game One i which common

knowledge of rationality of plavers 1s assumed.
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Figure 7: Comparing methods

The empty bullets are a reminder that MAXM- and Bl-paths are justified
only under special conditions, e.g., complete 1gnorance of each others’ ra-

tionality (MAXM), or common knowledge of rationality (BI). The arrows
indicate that under corresponding conditions, the MAXM-path and BLpath
become the KB R-path.




KBR vs Aumann’s rationality

The mathematical formulation of Aumann’s rationality considers irra-
tional any choice by 7 of a strategy ¢; 1n a situation when ¢ knows that there
is another strategy o, which strictly dominates ;. All strategies which are
not irrational are considered rational

This definition of rationality works well when uncertainty at a node can
be completely resolved by epistemic reasoning, e.g., under common knowl-
edge of rationality in perfect imnformation games, or when the player knows
that one strategy strictly dominates all others. However, Aumann’s ratio-
nality does not help to make decisions in general situations, e.g., when there
1s a choice of several strategies, none of which strictly dominates the others.

Any KBR-rational strategy i1s Aumann-rational, but not vice versa.

Finally, if Aumann’s rationality vields a definitive answer, then this an-
swer 1s the K BR-solution. In this respect, KBR-rationality may be regarded
as a definitive extension of Aumann’s rationality.




The power of public announcement PA

1(4)  2B)  3(4)  4(B)  5(4)
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1,0 0,2 3 1 2.4 5.3

Game Five. Consider a version of the Centipede game i Figure 2 1n
which A decides to make one mrrational move across at node 5, and this,
along with rationality of players at all other nodes. 1s commonly known.
Then both players choose across at all nodes, A’s payoft 1s 4, and B's payott

1s 5. Indeed, by assumption, A plays across at 5. At node 4, B knows that

A will play across at 5, hence B rationally plays across at 4 as well. B’s
reasoning 1s known to A, hence A plays across at 3, etc.




PA with a probabilistic twist

1(4) 2(B) 3(4) AB) 54 15

3

1,0 0,2 3.1 2.4 5.3
Game Seven. Player A can do even better if he 1s allowed to play proba-
bilistically. Suppose, in Figure 2, at node 5, A plays across with probability

0.51 and down with probability 0.49, and this, along with the rationality of
players at all other nodes, 1s commonly known. Then B’s expected payoft
when playing across at node 4 1s 4.02 which 1s a higher payoftf than playing
down at node 4. So B rationally chooses across at 4. Likewise, A’s expected
payofl at node 3 when playing across 1s 4.49, which 1s higher than his payoft
of down at node 3. Therefore, A plays across at 3. The same reasoning jus-
tifies playing across at nodes 1 and 2 as well. As a result, both players play
across at nodes 1-4, and A tosses a 0.51/0.49 coin at node 5. The average
payoff for A is 4.49 (and can be made arbitrary close to 4.5 by playing with
‘almost’ 0.5 probability at node 5) and the average payoft for B is 4.02.




Modernization Dilemma and PA

Two players: Gov - government, Corp - corporation.
Corp faces an overdue modernmization. Moves: modernize and stagnate.
(ov wants to take over. Moves: free and control.

free control

modernize | 2,2 0.0

4 I

stagnate | 3.1 = 1.3

Stagnate 1s the dominant strategy for Corp.

The only Nash equilibrium is (stagnate, control) with payoffs (1,3).

Corp realizes this and plays strategically: publicly announcing modernize !
By elimination of possible worlds rule, the second row disappears. The new

equilibrium is (moedernize, free) with payoffs (2,2).
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