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To believe, or not to believe

Two rational players, Ann and Bob, with common belief of
rationality playing a game of perfect information. The course of
the game depends on how Bob would react to being surprised by
Ann’s hypothetical irrational move. There are various options:

1. Bob revises his beliet about Ann’s rationality for the
remainder of the game.

2. Bob maintains his belief in Ann’s rationality for the
remainder of the game.

Stalnaker describes what happens when (1) 1s allowed.
We claim that (2) also makes perfect sense and study this case.




Does one mistake disquality?

Not really:

1. Random error

2. Friendly fire

3. Learning mistakes

4. Age-related mistakes
5. Communication errors
6. Implementation errors
7. etc.,

are all examples of non-disqualifying mistakes.




Losing trust can be lethal

In the Battle of Barnet, April 14, 1471,
Edward IV led the House of York in a
fight against the House of Lancaster,
which backed Henry VI for the throne.
The Battle ended in Edward's victory
and became a decisive turn of fortune in
the Wars of the Roses.

Oxford quickly overwhelmed Hastings
and then retraced his steps through the
fog back to the fight. His group arrived,
unexpectedly, at Montagu's rear.
Obscured by fog, Montagu's men
assumed their allies were Edward's
reserves and unleashed a volley of
arrows. Oxford and his men immediately
cried treachery, struck back and began
withdrawing from the battle.

. — o

......
»
L

Hadley
Green

Scale of metres
0 100 200 300 400 500
[ — — ]

/\/&00

Barnet \

o Hat

Dead Man's
Bottom

To London

N

M/J

.
%
[
(-}
B




Losing trust can be lethal

In the Battle of Barnet, April 14, 1471,
Edward IV led the House of York in a
fight against the House of Lancaster,
which backed Henry VI for the throne.
The Battle ended in Edward's victory
and became a decisive turn of fortune in
the Wars of the Roses.

Oxford quickly overwhelmed Hastings
and then retraced his steps through the
fog back to the fight. His group arrived,
unexpectedly, at Montagu's rear.
Obscured by fog, Montagu's men
assumed their allies were Edward's
reserves and unleashed a volley of
arrows. Oxford and his men immediately
cried treachery, struck back and began
withdrawing from the battle.
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The Hunt for Red October

Ofticer: Combat tactics, Mr: | g JagN ‘
Ryan. By turning into the (. . |
torpedo, the captain closed
the distance before it could
arm itself.

Jack Ryan (Alec Baldwin):
So that's it?

Capitain Ramius (Sean Connery): Not quite. Right now, Captain
Tupolev is removing the safety features on all his weapons.
He won't make the same mistake twice.




Experience is worth it

Russian proverb:
3a 00H020 OUmMo20 08yx
HeOumwlx oarom.

I iteral:
A beaten one is worth two
unbeaten ones.

“...h1s father saw him and
was filled with compassion
for him; he ran to his son,
threw his arms around him
and kissed him.”

— Luke 15:17-20, NIV

Rembrandt, Return of the Prodigal Son, 1662,
(Hermitage Museum, St Petersburg)



http://en.wikipedia.org/wiki/New_International_Version
http://en.wikipedia.org/wiki/New_International_Version

Does one mistake disqualify?

Perhaps, a complete disqualification after a single mistake 1s the

exception rather than the rule.

We need an analysis of games that models a certain degree of
error-tolerance.




Belief revision in games

Stalnaker’s approach to games of perfect information (PI games)
introduces belief revision into players’ reasoning. T'he paradigmatic
example is given by this simple common interest game. In Aumann's
setting, given common knowledge of rationality, players play the

Ann a B'?E:- a Ann a

. =~ @ 3.3
(o)} (", g
d d d
] i y
2.2 1,1 0,0

backward induction solution, i.e.. across at all three nodes. Stal-
naker's approach, with ‘the same’ epistemic assumptions, claims
that the solution (dda), i.e., Ann plays down at vy, Bob plays
down at v9. and Ann plays across at vz, if commonly known is
also commonly known to be rational.




Stalnaker reasoning

Ann «a Bob a Ann a
° =y =~ ® 3.3
(N Ua Ug
d d d
r \
2,2 1.1 0.0

We assume that (dda) 1s commonly known and check that

players are rational at each node.

e Ann is rational at v3 by the game tree.

e Bob is rational at v9 since if Ann were to play across (an obvi-

ously irrational move by Ann given her knowledge that Bob is

playing down), then Bob revises his initial belief of Ann's ratio-

nality and no longer assumes that Ann will play across at vg.

Under these circumstances, playing down at vs is not irrational

for Bob.

e Ann is rational at vy since she knows that Bob is playing down.
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Stalnaker reasoning

In this proof, the heart of the matter 1s how Bob would react to being
surprised by Ann's irrational move across at v;. Stalnaker describes what
happens when Bob revises his beliefs about Ann's rationality for the
remainder of the game, which makes good sense. This case was cast 1n a
formal logical framework by Halpern in 2001.

What 1s good about Stalnaker’s approach?

It made belief revision an issue in Game Theory.

11



Stalnaker reasoning: reservations

1. An artificial example. The atorementioned Ann-Bob game 1s a PI game,
with the unmotivated epistemic constraint that dda 1s commonly known.

2. A made-up juxtaposition with Aumann’s Theorem on Rationality.

Epistemology usually attributes to knowledge a certain indefeasibility

(infallibility, reliability, truth-tracking, necessity, etc.). What is known, 1s true

in a robust way and 1s not subject to revision. Aumann’s assumption CKR

common knowledge of players' rationality,

does not suggest the possibility of revising the rationality condition.

The Stalnaker setup 1s a fit for a different well-known assumption RCBR
players' rationality and common belief of player' rationality.

3. Does not accommodate other revision policies, ¢.g., robust belief of
rationality, error-tolerance, virtue of experience, etc.
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Extensive Games

Let us recap basic terminology (|2, 6]). An extensive game consists
of the following components.

1. A finite set N = {1,2,....n} of players.

2. A finite rooted tree H. Each node has a unique path from the
root called the history of this node. The leaves of the game tree are
called terminal nodes, or outcomes. The set of all terminal nodes is
called Z.

3. A player function P that assigns a player (who makes a move)

to each nonterminal node.

4. For each player 7, a payoft function u; defined on Z.
The root node is the starting point of the game. At any node
v e (N\Z), player P(v) chooses one of the successor nodes (move).

There is no specification of epistemic state of players yet!
This leaves a room for more studies, paradoxes, speculations, etc., and we
are entering this room now...

13



Aumann Models

An Aumann model is a tuple M = (Q, Ky, ....K,.s), where
() is a set of “epistemic states” of the world, /Cy..... K, are knowl-
edge partitions of €2 corresponding to players 1,2.....n, and s is a

mapping from €2 to the set of all strategy profiles: for a state w,

s(w) = (S1,...,5n).

We write s;(w) for 7’s component of the strategy profile s(w), i.e.,
si. Also, let (s, Sé) be the strategy profile obtained from s by
replacing s; by s', h¥(s) be i’s conditional payoff if strategy profile
s is followed starting at v, and K;(w) be the cell in K; that includes
w. We assume that players know their strategies (“measurability” property),

that means that if " € #,;(w), then s,(w) = s;(w"); that is, i uses the same
strategy at all the states in a cell of #,.

Given AM, each epistemic logical formula / built from “Ann knows,” “Bob
knows,” and specific move propositions “player i chooses move j at node v,”

receives a definitive truth value 1in any given state o
OFF or okFF.

14



Aumann Models: Example

A?ﬁn a fB::rb a é?in a 3.3

(1) Ua Usq

Model AM;: / !
2.2 1.1 0.0

e s!is the strategy profile (dda), i.e., Ann plays down at v, Bob
plays down at vy, and Ann plays across at vs;

e 57 is the strategy profile (ada);
e 57 is the strategy profile (add);
e s* is the strategy profile (aaa);

(aad)

o ()= {wi,wsy, w3, Wy, ws}; s(w;) = s/ for j =15

e s° is the strategy profile (aad

15



Aumann Models: Example

A?'z.n a ;B.E:rb a é?in a 3.3

(8] (B Ug

d d d

i |

2,2 1,1 0,0

e s!is the strategy profile (dda), i.e., Ann plays down at v, Bob
plays down at vy, and Ann plays across at vs;

e 5 is the strategy profile (ada):;
e s is the strategy profile (add);
e 5% is the strategy profile (aaa);

).

e 5° is the strategy profile (aad
o K gpn=Hwil {wa) {wsf. {waf. {ws )}
o Kpop = {{wi). {we, wat {wsj. {ws i 1




Aumann Models: Example

Ann a ;be a irln a 3.3

(2] Ua Usq

d d d

i |

2,2 1,1 0,0

e s!is the strategy profile (dda), i.e., Ann plays down at v, Bob
plays down at vy, and Ann plays across at vs;

In state w;, 1t 1S common
knowledge that Ann plays down
at vy, across at vz, and that Bob
plays down at vo.

e s° is the strategy profile (ada

e 57 is the strategy profile (add

e 5% is the strategy profile (aaa
In state w2, Ann knows that

Bob plays down, Bob knows
o Kpnn = {{wr} {wa} {ws} {wa}. {ws}}; that Ann plays down at vs but

| considers either move by Ann
® K’BOE} — {{Lﬁl}r {;:JZ‘r ;«'JS}r {;ﬁil}e {;AJE}}}; at vs3 possib]e.

)
);
)
).

e s’ is the strategy profile (aad
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Aumann Models: Pros and Cons

Aumann models are the game-theoretical equivalent of canonical models
= collections of maximal S5-consistent sets. Like canonical models, Aumann
models are capable of representing any epistemic condition concerning the
moves propositions.

An Aumann model does not specify the game. 4, ¢ B ¢ _ 5,
Consider model AM; with U1 U2 |
s(w1) =dd, s(w2)=da, s(m3) = aa, d J

Kuann = {{o1, 02}, {03},

Kpob = {{w1}, {m}, {03}}. 2.2 1,1

The question of whether Ann knows that Bob will play across depends on the
state: YES 1n w3, NO 1n o1, m2. On the other hand, 1n a real game with real
players, this question should have a definitive answer.

An Aumann model + a state overspecifies the game: 1t describes not only
players’ knowledge, but also the players’ choices which are not necessarily
determined by the game rules.

18



Aumann Models: Pros and Cons

Aumann models allow for problematic games. Consider AM3 which 1s
defined as AM; but with Ky, = Kpo» = {{w1}}. This game may be regarded
as the result of a public announcement that dda 1s played.

This “game” looks problematic since each player’s strategy 1s common
knowledge. There 1s no “game” here.

Perhaps 1t 1s worth studying ‘regular games’ in which epistemic conditions
are limited to player’s rationality rather than specific moves.

19



Aumann’s account of rationality

Informal Account = Rationality as Reputation

Rationality of a player means that he is a habitual pay-
off maximizer: that no matter where he finds himself —
at which vertex — he will not knowingly continue with a
strateqy that yields him less than he could have gotten
with a different strateqy.

This 1s a remarkably epistemic approach, “knowingly” being a key
word. This account 1s rather about “rationality as reputation”
though further formalizations deviate considerably from this spirit.

20



Definitions of Aumann rationality

An 1nformal definition first:

Definition 1 Player i is rational at vertex v if there is no strat-
eqy that i could have used that he knows would net him a con-
ditional higher payoff than the strateqy he actually uses.

A completely formal definition:

Definition 2 Player i is rational at vertex v in state w if, for
all strategies s' # s;(w),

hi(s(W)) > hi(s_;(w'),s")

1

for some W' € K;(w). Player i is rational in state w if i is
rational at any node n w.

21



Definitions of Aumann rationality

Definition 2 Player i is rational at verter v in state w if, for
all strategies s* # s;(w).

hY(s(w')) > hY(s_i(W'), s')

l (4

for some W' € K;(w). Player i is rational in state w if i is
rational at any node n w.

Rather, 1t defines ‘irrationality.’ Player i is irrational (at a node v 1n
state w) 1f i can do strictly better by using some other strategy against all
the strategy profiles of the other players that he considers possible at w.

There is a hidden independency assumption: for any strategy s* and any
possible state w’, strategy profile (s-(w’),s?) is deemed possible by i at v.

22



Definitions of Aumann rationality

Note that these characterizations of rationality (Informal Account,
Definition 1, and Definition 2) lead to a different analysis.

Informal Account = Rationality as Reputation 1s close to the condition
“holds 1n each state” typical in public announcements, the universal
modality, the McCarthy “any fool knows” modality, justified common
knowledge, etc., which 1s quite different from statewise rationality, even
with the common knowledge assumptions.

Definition 1 1s statewise, hence different from Rationality as Reputation.

Definition 2 1s also statewise, but works only under special epistemic
assumptions, €.g., the Independence Condition (see the next two slides),
and fails 1n some other natural PI games.

23



Aumann Models: Pros and Cons

Aumann models do not represent some reasonable PI games.
A a B a

Game 2 has this game tree and the following T, ~ Y0, > 3,9
commonly known epistemic conditions:
1. 1f Ann plays across, then Bob plays across; d d
2. 1f Ann plays down, then Bob plays down.
2,2 1,1

This extensive game does not seem to be fairly represented by any Aumann
model. Indeed, there are two possible profiles: dd, aa, (states o1 and w3).

KAnn — {{(Dl}a {(03}}'

Let us try to answer the question of whether 1t 1s rational for Ann to play
down. The 1ntuitive answer, as well as the answer suggested by Definition 1 1s
NO. Indeed, Ann knows that playing across will net her 3, down only 2.

Definition 2 applied to K., however, gives a different account: Ann is

rational in both states. In ®i, Ann’s choice 1s down. The alternative choice is
across, which could bring Ann only 1 since Bob chooses down.

24



Aumann Models: Pros and Cons

Aumann models do not represent some reasonable games.
A a B a

Game 2 has this game tree and the following T Bt = 3,3
commonly known epistemic conditions:
1. 1if Ann plays across, then Bob plays across; d d
2. 1f Ann plays down, then Bob plays down.
2,2 1,1

An Aummann model proponent could say that Bob’s strategy 1s defined under
the assumption that Bob’s node is reached. Since, by (1), Bob plays across 1f
v2 1s reached, Ann’s condition (2) becomes impossible: even if Ann plays
down, she knows that Bob’s choice at v2 1s across. The resulting Aumann
model for Game 2 could then be AMs3:

Kamn = {{a}, {os}}; Kpop = {{m2, @3} }
which does not reflect Game 2, although having the same rational solution aa
as Game 2.

In Aumann models, a player chooses his/her strategy at the beginning of the
game and hence this choice does not depend on actual moves by other
players (Independence Condition). This is a limitation of the model.

25



Aumann Models: Pros and Cons

Aumann models do not fairly represent some reasonable games.
A a B a

Game 2 has this game tree and the following T Bt = 3,3
commonly known epistemic conditions:
1. 1if Ann plays across, then Bob plays across; d d
2. 1f Ann plays down, then Bob plays down.
2,2 1,1

It might appear that the Independence Condition aoes not miiuence wne game
analysis: 1f a vertex 1s not reached, then choices at said vertex do not alter the
game path/outcome. This argument does not work 1f the rationality analysis 1s
involved. Definition 2 considers arbitrary combinations of any i-th player’s

strategy s* with any other players’ strategies S-i(w”) deemed possible by i and
this requires the Independence Condition.

For example, in Game 2, the Independence Condition does not hold and
Definition 2 applied to a simplistic Aumann model for Game 2 leads to a

counter-intuitive conclusion that playing down 1s rational for Ann.

Definition 1 is applied even when the Independence Condition does not hold.

26



Belief revision models

Extended models formalize Stalnaker’s representation of coun-
terfactuals via the selection function “the closest world where a given

LR
|

vertex is reached.” In a formal setting, the extended model is a tuple

M= (OQ,Ky,.... Ky, s, f)

where (€2, KCq, ..., Ky, 8) is an Aumann model and a selection func-
tion f maps pairs of states and vertices to states. The intended
reading of f(w,v) = w' is

W' is the closest state to w in which vertex v s reached.
It is assumed that f satisfies the following conditions:
F1. Vertex v is reached in f(w,v).
F2. If v is reached in w, then f(w,v) = w.

3. w,v)) and s(w) agree on the subtree of the game tree at
F3. s(f(w,v)) and s(w) agree on the subtree of the game tree at
and below v.

27



Belief revision models: example

s(01) = dda, s(w2) = ada, s(3) = add, VLAV g
s(w4) = aaa, s(0s) = aad, l 2 J

K = {{o1}, {0}, {03}, {04}, {os}} ¢ : d

Kpob = {{m1},{m2,03},{mw4},{ms}} ) 1_1 OfD

There exists a unique selection function here:

flwi, v2) = wa, flwi,v3) = wy, f(w2,v3) =ws, f(ws, v3) = ws,

and f(w,v) = w in all other situations.

Definition 3 (Halpern) Player i is Stalnaker-rational in
state w at vertexr v if i is rational at vertex v in f(w.v). Player
1 18 Stalnaker-rational in state w if © is Stalnaker-rational at
any of its vertices in w.

Stalnaker rationality spills over epistemic reachability - state f(w,v)

can be unreachable from w - which 1s an indication that reachability-
based common knowledge may be insufficient here.

28



Belief revision models: example

s(01) = dda, s(w2) = ada, s(3) = add, VLAV g
s(w4) = aaa, s(0s) = aad, l 2 J

K = {{o1}, {0}, {03}, {04}, {os}} ¢ : d

Kpob = {{m1},{m2,03},{mw4},{ms}} ) 1_1 OfD

There exists here a unique selection function:

flwi, v2) = wa, flwi,v3) = wy, f(w2,v3) =ws, f(ws, v3) = ws,

and f(w,v) = w in all other situations.

Definition 3 (Halpern) Player i is Stalnaker-rational in
state w at vertexr v if i is rational at vertex v in f(w.v). Player
1 18 Stalnaker-rational in state w if © is Stalnaker-rational at
any of its vertices in w.

Bob i1s Stalnaker-rational at v> 1n state w; if Bob is (Aumann-)rational

at f(w1,v2)= w2 which is not reachable from w.
Stalnaker rationality spills over common knowledge as reachability.

29



Stalnaker reasoning, formally

Ann a Br:rb a Ann

s(w1) =dda, s(m2) = ada, s(w3) = add, o . o 3.3
s(w4) = aaa, s(0s5) = aad,

Kamn = {{o1},{02§,{03},{04§,{ 05} |

KBob = {{®1},{02,03},{m4},{0s5} } 2r2 1.1 0,0

fwi,va) = wa, f(wi,v3) = wy, fwa,v3) = wy, f(ws,vs) = ws,

and f(w,v) = w in all other situations.

d d d

Stalnaker rationality is common knowledge in wy. (3)

[ndeed, since K 4,n(w1) = Kp,pwi) = {wi}, everything that is
true in wy is common knowledge in wq. Stalnaker rationality of both
players holds in wq, in particular, Bob is Stalnaker-rational in wq
at vy. Selection function f reduces this question to the claim that
Bob is (Aumann-) rational in we at vertex vy which is established
by direct application of Definition 2.

30



Stalnaker reasoning, formally

Ann a Br:rb a Ann

s(w1) = dda, s(m2) = ada, s(®3) = add, o . . 3,3
s(w4) = aaa, s(0s5) = aad,

Kamn = {{o1},{02§,{03},{04§,{ 05} |

KBob = {{®1},{02,03},{m4},{0s5} } zrz 1.1 0,0

fwi,va) = wa, f(wi,v3) = wy, fwa,v3) = wy, f(ws,vs) = ws,

and f(w,v) = w in all other situations.

d d d

The problem is that in state w9 at vertex v Bob cannot know
that Ann is Stalnaker-rational. Indeed. Ann is not Stalnaker-
rational in ws (since f(ws, v3) = ws and Ann in not rational in ws at
v3). and w3 € K p,p(w2). Speaking informally, following selection
function f(wy,v9) = we, Bob in wy revises his belief that Ann plays
down at v1 and considers the case w9 in which Ann plays across at

. Accidentally, Bob also forfeits his knowledge of Ann's rationality
:;-1t vg, thus treating this knowledge as mere belief.

31



Stalnaker reasoning, formally

Ann a Bob a Ann

s(w1) = dda, s(w2) = ada, s(03) = add, o ® o 3,3
s(w4) = aaa, s(ws5) = aad,

Kuann = {{(Dl} {(DZ} {(03} {0)4} {(05}} ‘ : dﬁ
KBob = {{001} {002 (03} {004} {(DS}} 2.2 1,1 0,0
f(wi,v2) = wo, fwr,v3) = wy, f(wa,v3) =wy, f(ws, v3) = ws,

and f(w,v) = w in all other situations.

The formal result: “common knowledge of Stalnaker rationality does
not yield backward induction” 1s correct. However, its interpretation
as “‘common knowledge of rationality does not yield backward
induction” 1s not entirely convincing. Common knowledge of
Stalnaker rationality holds at the beginning of the game, but 1s
forfeited after the first move, 1.e., behaves as belief rather than
knowledge. Informally, the Stalnaker example 1s a fit for

‘rationality and common belief of rationality’
rather than

‘common knowledge of rationality.’

32



Common knowledge is too weak

The initial assumption of common knowledge as reachability 1s too weak
in the belief revision models. The selection function that determines the
way rationality 1s calculated does not respect reachability and hence this
‘common knowledge’ can simply disappear in the process of the game.

What grounds could one find for deriving the backward induction
solution if its principal source, common knowledge of rationality at
every induction step, is no longer valid?

The Stalnaker theorem states the expected: NONE, and provides an
example.

We now consider a belief revision model in which common knowledge of
rationality for the remainder of the game 1s maintained throughout the
game. For this we will need a stronger notion of common knowledge.

33



The Initial Format 1

We introduce a notion of robust knowledge of Stalnaker rational-
ity in which Stalnaker rationality holds in all relevant situations.

This notion captures the essence of belief revision under which
knowledge of rationality at a vertex is maintained whenever possible.
This can also be considered as a case study which sketches a general
framework for different sorts of rationality: (Aumann) rationality
is required for some sets X of situations, i.e., pairs (state,vertex),
and the choice of X is used to specify the corresponding notion of
rationality. In particular,

1. knowledge of rationality in statew: X = {(w,v) | vis a vertex};

2. Ccomimon knom-*lodfre of rationality in state w:
X ={(w',v) | W is reachable from w,v is a vertexr};

3. Stalnaker rationality in state w: X = {(f(w,v),v) | v is a vertex}.

34



The Initial Format 11

Given an extended model M = (Q, Ky, ..., K, s, f), a situa-
tion is a pair (w, v) consisting of a state w and vertex v of the game
tree. We define a notion of relevant situation which reflects our
coal to maintain common knowledge of Stalnaker rationality for the
remainder of the game at any depth of the belief revision process.
The set of situations relevant in (w, v) is closed under belief revi-
sion, epistemic reachability, and advancing to a later moment in the
came. Robust knowledge of Stalnaker rationality (Defini-
tion 4) is defined then via rationality in any relevant situation.

35



Relevant Situations

A situation (w',v") is relevant in (w,v), if there is a finite se-
quence of situations with m > 1
(W, v) = (wo, vg), (W1.v1), (Wa, V), ..., (Wi, V) = (W', V)
such that foreach £ =0.... . m — 1.
L. vp < vpaq. 1€, vpoq 18 a future node with respect to vy
2. Wk+1 = f(Wg, Vp+1) for some wy. reachable from wy.

[t is easy to see that to get from (wy, v ) t0 (Wr+1. Ve+1), one has to

T

pick a state wy, reachable from wy (e.g., Wi = wy) and a future vertex

Vg1 (€.2., Vi1 = 1), and advance to the revised state f(wg, vx).
[teration of this procedure generates all relevant situations.

36



Relevant Situations: example

Ann a be a Ann a

s(w1) =dda, s(m2)=ada, s(03) = add, o o
s(w4) = aaa, s(®s) = aad,

Kuann = {{o1},{02},{m3},{ms},{o05}}
Kpob = {{01},{02,03},{w4},{®s} } 2;2 11 0.0

flwi, v2) = wa, flwi,v3) = wy, [f(wa,v3) = ws, f(ws,v3) = ws.
and f(w,v) = w in all other situations.

d d d

Example 1 In model A, the set U of situations relevant in (wy, v3)
is U = {(wy,v3)}. The set V' of situations relevant in (wq, v9) is
V = U U{(wg,19), (w3,v9), (ws,v3)}. The set W of situations
relevant in (wq,v1) is W = V U {(wy,v1)}. Intuitively, Stalnaker
rationality in state wy is determined by (Aumann) rationality in
five situations from W .




Robust Knowledge of Rationality

Definition 4 Robust knowledge of Stalnaker rationality in state
w at verter v means that in any situation (W', v") relevant in
(w,v). player P(v") is rational in W' at v'. Robust knowledge
of Stalnaker rationality in state w means robust knowledge of
Stalnaker rationality in state w at v for each vertex v.

This definition justifies the notion of a ‘relevant situation’: robust
knowledge of Stalnaker rationality guarantees common knowledge of
‘Stalnaker rationality is maintained for the remainder of the game’
in any relevant situation.

38



Robust Knowledge of Rationality

Definition 4 Robust knowledge of Stalnaker rationality in state
w at verter v means that in any situation (W', v") relevant in

(w,v). player P(v") is rational in ' at v'.

Robust knowledge

of Stalnaker rationality in state w means robust knowledge of
Stalnaker rationality in state w at v for each vertex v.

Ann

a Bob a
= @

Ann a

s(w1) =dda, s(02) = ada, s(03) = add, o
s(w4) = aaa, s(®s) = aad,
Kann = {{o1},{02},{03},{04},{0s} |
Kgob = {{o1},{m2,m3},{wa},{ws}} )

d

=~ @ 3,3
U2 Usg
d d
b
1,1 0,0

flwi, va) = wa, f(wr,vs) = wy, f(wa,v3) = wy, flws,vs) = ws,

and f(w,v) = w in all other situations.

Example 2 In model A, Stalnaker rationality is common knowl-
edge in wy. However, robust knowledge of Stalnaker rationality does
not hold in (wy, v1). Indeed, situation (ws, v3) is relevant in (wy, vq).

but Ann is not rational in ws at vs.
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Robust Knowledge and Centipede

Q:{Lb’la.i-b’%w?,}? A?Eﬂ, a ﬁ;:rb a ér&n a

_ (2,3)
- . : . : . (25 (& U
K Ann =K Bop = 11wi}, {wat 1ws) 1 1 E 3
d d d
s(wy) = (ddd), s(we2) = (add), s(ws) = (aad);

flwi, va) = ws, flwi,v3) = flwa,v3) =ws. (1,0 (0,2) (3,1)

Stalnaker rationality does not hold in some situations, e.g.. (wq, v1)
and (w3, v9). However, such "bad’ situations are irrelevant in ‘real
state wy and robust Stalnaker rationality holds in wy. Indeed, rele-

vant situations in wy for all possible v's are

{(w,v1), (wa,v2), (w3, v3)},

and the corresponding players are rational in all of them.

In Centipede, backward induction survives belief revision given
robust knowledge of rationality in the initial state.
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Robust Knowledge and Bl

Theorem 1 In extended models over generic game trees, robust
knowledge of Stalnaker rationality yields backward induction.

Proof. Let
M — (E!,K:l, ':'}Cﬂvsvf)

be an extended model such that robust knowledge of Stalnaker ra-
tionality holds in state w of M. This vields that a corresponding
player is rational in w’ at " for each situation (&', v) relevant in
(w, vg) where vy is the root vertex. We claim that for every relevant
situation (w’, v’), restriction of profile s(w’) on the subtree I' below
v coincides with BI. Theorem 1 follows from this claim since (w, vg)
is relevant in itself and the subtree I' below vg is the entire game
tree.
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Robust Knowledge and Bl

To prove the claim, assume the opposite, i.e., that s(w') # BI
on the subtree I' below v for some relevant situation (w',v"). Let
(W', ") be such a situation with the lowest non-terminal vertex v”
Also, let 7 be the player making a choice at v'.

Note that s(w’) coincides with BI at any vertex v” strictly below
v, Indeed, situation (f(w',v"”), v") for any vertex " strictly below
v" is relevant, by the definition. By choice of (W', "), s(f(w’, v"))
coincides with Bl on v”. By condition F3 on the selection function.
s(f(w',v")) agrees with s(w’) on v”, hence s(w’) coincides with Bl
on v

Then 7 is not Aumann-rational at ©" in w’. Indeed, the backward
induction at v" chooses the best move for 7 given Bl-moves at all
other nodes of the subtree I" below v". Since the choice of s(w') at
v” is different from those of BI and the game tree is generic, it can

only be strictly worse. By Definition 1. 7 is not rational in w’ at v".
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Discussion

Extended models treat knowledge as defeasible: players revise not
only their beliefs in other players” moves but also their ‘knowledge’
of rationality for the remainder of the game. However, in episte-
mology, ‘knowledge’ is usually understood as non-defeasible, and
not subject to revision. In this respect, the Stalnaker example re-
flects the assumption ‘rationality and common belief of rationality’
rather than ‘common knowledge of rationality.’

The notion of robust knowledge of Stalnaker rationality reflects
the idea of common knowledge of Stalnaker rationality for the re-
mainder of the game at any depth of the belief revision process; it
necessarily goes beyond reachability-based common knowledge.
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Discussion

For games with a ‘small’ number of irrational moves, robust
knowledge of Stalnaker rationality can be justified by the strong
a priori rationality reputation of players, their history of rational
behavior, etc. An isolated irrational move can be viewed as a tech-
nical error. However, trust in rationality fades with each irrational

move and given a ‘large’ number of such moves, robust knowledge of

Stalnaker rationality becomes unfeasible. More realistic models of

robust rationality should include a bound on the number of errors
(e.g., one) allowed for each player.
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Vicious Circle of Stalnaker Revmons

Holmes vs Moriarty Game.
HEE a ;l-i;m a gfﬂ a

U1 U2 U3

d d d

W W W

2,0 3,2 0,1 | |
Assumption: “Common knowledge of rationality.”

Robust players: Backward Induction solution daa.

SHERLOCK HOLMES & MORIARTY

Stalnaker players: No commonly known solution. “THE FINAL PROBLEM"
Case 1 - d 1s rational. Then Moriarty at v, forfeits his belief in Holmes’s
rationality and plays down (by Harsany1’s maximin principle of rationality)

which makes Holmes’s choice at v; not rational.

Case 2 - a 1s rational. Then Moriarty maintains his belief in Holmes’s
rationality and plays across, which renders Holmes’s choice at v; not rational.

By the spirit, robust rationality models appears more appropriate here.
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