
Conference Computation and Complexity
The Center for Algorithms and Interactive Scientific Software (CAISS)

The City College of New York

Computer-Aided Proofs
and Their Significance

Sergei Artemov

(The City University of New York - Graduate Center)

May 12, 2006

The plan of this talk

• Proofs and Provability: basic observations

• General purpose proof assistants and their uses

• Metatheory of verification

• Incorporating decision procedures

• Four Color Theorem, Kepler’s conjecture

• Formal proofs outside mathematics

• Conclusions

Proofs and Provability

Two closely connected functions of proofs:

• truth certification

• providing insights about the structure of objects

We will begin by discussing the former.

Given a sentence, find its proof:

• undecidable for general purpose quantified languages

• unfeasible for general propositional languages

Given S and p, certify that p is a proof of S:

• decidable and feasible for many general purpose languages

• practical, implemented in a variety of computer-based proof assistants

General purpose proof assistants

Prehistory: de Bruijn’s Automath Project

Modern architecture: Robin Milner (1972) Stanford LCF (Logic for Com-

putable Functions). Circa 1979 - Edinburgh’s LCF - tactics, isolated trusted

core, proof checker.

Current (incomplete) list: HOL, Coq, Mizar, Isabelle, PVS, Nuprl/MetaPRL

.

Most use a goal-driven derivation: the user starts from the goal and “de-

composes” (refines) it down to axioms and/or established facts (top-down

derivation). At every moment, a partial derivation is a tree with possible

ungrounded leaves. It becomes complete when all leaves are ground.

HOL

Stands for (classical) Higher-Order Logic, uses predicate calculus with terms

from typed λ-calculus.

Mike Gordon (Cambrige University), 1988, a direct descendant of Edinburgh

LCF. Current versions: (HOL88, HOL90, HOL98, HOL Light, HOL 4).

Mathematics formalized in HOL: real analysis up to fundamental theorem of

calculus, complex numbers up to fundamental theorem of algebra, weak form

of the Prime Number Theorem, floating-point arithmetic, etc.

HOL Light was designed by John Harrison and Konrad Slind, runs on standard

PC’s, and supports both top-down and down-top derivations. It has been used

in the Flyspeck project to machine-check Tom Hales’s proof of the Kepler

conjecture. Success so far: the Jordan Curve Theorem.

Coq

Coq, INRIA, is based on Coquand’s Calculus of Inductive Constructions (1985),

extension of Girard’s polymorphic λ-calculus Fω. Its main goal was specifi-

cation and verification of programs. Coq’s basic logic is intuitionistic, and

it includes a mechanism for automatic generation of certified programs from

proofs of their specifications

Coq is widely used for formalization of mathematics: real analysis, construc-

tive category theory, elements of constructive geometry, group theory, domain

theory, fundamental group theory. A recent success story: formalization and

verification of a proof of the Four Color Theorem (1999/2004).

Mizar

Non-interactive proof-checker, forward style from axioms to goals.

Started in 1974 (Andrzej Trybulec) as software to support a working mathe-

matician in preparing papers.

Logic: classical first-order, Jaskowski’s natural deduction.

Mathematics: Tarski-Grothendieck set theory.

Journal Formalized Mathematics (a computer assisted approach) established

in 1990 and devoted solely to the formalizations of mathematics in Mizar. All

papers are checked by the Mizar. They formalized the Jordan Curve Theorem

for special polygons. They are in the process of formalizing general Jordan

Curve Theorem. Mizar Mathematical Library includes 926 articles written

by 175 authors and 41525 theorems, 7838 definitions, 722 schemes, 6805

registrations, 5784 symbols, 1903 keywords.

Isabelle

Isabelle (started in 1986, Larry Paulson, Cambridge University, and Tobias

Nipkow, TU Munich), rather a logical framework (“generic proof assistant”),

not tightly bound to one specific logic.

Meta-logic is intutionistic higher-order logic with equality; different logical

systems can be defined: HOL, FOL, ZF, HOL with Scott’s Logic for Com-

putable Functions (domain theory) added, small fragment of Martin-Löf’s

Type Theory (ITT), Barendregt’s Lambda Cube, and others.

Large theory library: elementary number theory (for example, Gauss’s law

of quadratic reciprocity), analysis (basic properties of limits, derivatives, and

integrals), algebra (up to Sylow’s theorem), and set theory (the relative con-

sistency of the Axiom of Choice), the Prime Number Theorem.

PVS

Stands for Prototype Verification System, SRI International, commenced in

1990, intended for significant applications. PVS is a research prototype: it

evolves and improves as the stress of real use exposes new requirements.

Based on simply typed classical higher-order logic extended with subtyping,

dependent typing, and parametric theories which makes it somewhat closer

to Coq and Nuprl.

Mathematical library: calculus, domain theory, program semantics, graph

theory, a very elaborate library of decision procedures used for hardware and

software verification.

NuPRL

PRL = Proof Refinement Logic, 1973, Nu = ν, a version indicator.

NuPRL appeared around 1984, Robert Constable, Cornell, now versions 1-5.

Built around Martin-Löf’s Type Theory (ITT), a higher-order intuitionistic

system. Aimed at program specification and verification, has an impressive

list of successes. Nuprl is also a direct descendant of Edinburgh LCF.

Formalized mathematical theories including but not limited to constructive

real analysis, computational abstract algebra (multivariate polynomial arith-

metic, unique factorization domains), extracting constructive content from

classical proofs (Higman’s Lemma), automata theory, Turing machines, etc.

Some major protocol verification successes.

MetaPRL

Most recent development, 1998, Jason Hickey, joined by Aleksey Nogin, Cor-

nell, Caltech, CUNY, Moscow, HRL Laboratories, a direct descendant of

NuPRL, address scalability and modularity limitations of the latter. MetaPRL

is tested to be over 100 times faster than Nuprl in major domains.

MetaPRL is a logical framework with its main effort invested in Constructive

Type Theory (CTT); it also supports first-order logic, Aczel’s constructive

set theory CZF, and others.

Currently is used in designing verifiable compilers. Some noticeable mathe-

matical formalizations: abstract algebra for CTT and CZF.

Metatheory of mathematics. Completeness is an issue:

Assume T is consistent.

Then T does not prove its own consistency.

Metatheory of verification. Soundness is the main concern:

Assume T is consistent.

Why bother whether or not T proves its own consistency?

Trusted Core (TC) = basic proof checker with a small, transparent code.

Tested extensively, much more than the mind of an individual mathematician

could ever be. Tradeoff - it is infeasible to write all the proofs in a script

acceptable by TC (elementary proofs). Expansions of TC are needed: tactics

(rules), decision procedures.

The main metamathematical problem here:

Does a proof in an expanded system yield a proof script checkable by TC?

Metatheory of verification: (Davis & Schwartz, 1979)

Verified in V tactics: Rule Γ/ϕ such that V proves

Provable(Γ)→Provable(ϕ)

Stability: Any use of verified tactics yields an elementary proof

For any verified rule Γ/ϕ, if V + Γ/ϕ " ψ, then V " ψ.

For establishing stability of V, one needs to trust more then V itself.

Indeed, when V tries to emulate the rule Γ/ϕ, then the following happens:

V " Γ ⇒ V " Provable(Γ) ⇒ V " Provable(ϕ) ⇒ (?) V " ϕ.

To conclude that V " ϕ, a reflection principle in V is needed:

Provable(Provable(ϕ))→Provable(ϕ) ,

which is not provable in V .

Metatheory of verification: a more delicate analysis
(Artemov, 1999).

Explicit proofs: t:ϕ ∼ t is a proof of ϕ.

Explicit reflection t:ϕ→ϕ is internally provable.

Explicitly verified in V rule Γ/ϕ: there is a total computable function f such
that V proves

x:Γ ⇒ f(x):ϕ

Explicit stability: V + Γ/ϕ = V for each explicitly verified Γ/ϕ.

Explicit stability of V can be justified in V : just apply the proof checker.

V " Γ ⇒ V " t:Γ ⇒ V " f(t):ϕ ⇒ V " ϕ .

For constructive systems, stability yields explicit stability (explicit definability,

independence of premises). Other good cases: derivable rules, provable rules

(V " Γ→ϕ).

Moral so far

Proof assistants are considered safe, if they produce an elementary proof

checked by the trusted core. Elaborate system of tactics (lemmas, rules)

provide a comfortable level of flexibility and extendability.

Incorporating decision procedures

Useful decision procedures that decide whether P (x) holds, but do not neces-

sarily produce proofs of P (x) directly: deciding tautologies, validity of Pres-

burger liner terms, reducibility of configurations, etc: fast and potentially

unreliable. How to convert them into tactics?

Constable et al, Boulton, Harrison, Norrish, Kreitz, Schmitt, etc.

Some important techniques:

• Proof by evidence

• Proforma theorem

• Proof script

• etc.

Proof by evidence

A ‘dirty’ decision procedure produces a result which is easy to verify directly:

• a solution of a system of equations

• a circular chain of inequalities

• a satisfying substitution

• etc.

Using such a procedure is safe, given the system checks the result and builds

its formal proof.

Proforma theorem

The system formally proves the correctness of a given decision procedure:

for each possible input x, if the decision procedure accepts P (x), then there

is a formal proof of P (x).

Proforma theorems then can be used as lemmas in the final formal proof.

Example. A completeness theorem:

if a given satisfiability test fails for ‘not ϕ,’ then there is a proof of ϕ.

Actually, an explicit version of this theorem is needed:

We produce a function and prove that it transforms a given failed run of a

satisfiability test for ϕ into a proof of ϕ.

Proforma theorems are difficult to establish. Reflection is involved. We have

to execute the reflected version of the decision procedure from the Proforma

theorem, which is often less efficient, than its original version.

Proof script

Sometimes it is too difficult to prove proforma theorem but relatively easy to

prove its instances for each particular problem.

For example, proforma theorem might use a very complicated inductive rea-

soning, but for each particular problem, one can avoid induction using iteration

of similar reasoning steps.

One builds a function which transforms a result of a decision procedure for

ϕ into a proof of ϕ, and leaves it to the general proof checker to verify the

resulting proofs on a case-by-case basis.

This approach seems easier then the previous one, but it could be less efficient,

since we have to actually produce an elementary proof for each case.

Four Color Theorem

Since 1852 - Guthrie, de Morgan, Peirce, Hamilton, Cayley, Birkhoff, Lebesgue.

Appel and Haken, 1976, provided a proof that involved

• initial manual case analysis of about 10,000 cases,

• a computer analysis of a billion cases.

Scepticism: programming is known to be error-prone, difficult to relate pre-

cisely to specifications, small errors in the manual analysis.

Robertson, Sanders, Seymour, Thomas, 1995, a more streamlined version

using a similar argument, but employing a computer to check both the large

and the giant case analyses, made the former four times smaller. The question

of verifying the computer programs remained.

Four Color Theorem continued

December 2004, Georges Gonthier (Microsoft Research Cambridge) announced

a successful formalization of the 4CT, which is fully checked by the Coq v7.3.1

proof assistant. It is largely based on Robertson et al, but the two weakest

links of the proof have been removed:

• the manual verification of combinatorial arguments,

• the manual verification that the custom computer programs correctly fill
in parts of those arguments.

A formal proof script (60,000 lines) covers both the mathematical and com-

putational parts of the proof. This script was then run through the Coq

proof checking system (3 days). The programs used have been supplied by

the corresponding Proforma-style theorems. A checkable proof witness can

be produced: a huge higher-order λ-term containing detailed description of

all logical steps.

Kepler’s conjecture

In 1611, Kepler proposed that the natural close packing (actually, either of

the two) is the densest possible sphere packing, and this assertion is known

as Kepler’s Conjecture, KC.

In 1831, Gauss proved KC for regular packings.

In 1900, Hilbert included KC in his famous list of problems (Problem 18).

In 1953, Tóth showed that the problem of determining the maximum density

of all arrangements (regular and irregular) could be reduced to a finite (but

very large) number of calculations.

In 1998, Thomas Hales, then at the University of Michigan, announced a proof

consisting of 250 pages of notes and 3 gigabytes of computer programs, data,

and results.

Hales’s proof

Following Tóth, Thomas Hales determined that KC can be solved by minimiz-

ing a function with 150 variables over 5,000 different configurations of spheres

which involved solving approximately 100,000 linear programming problems.

Annals of Mathematics appointed a panel of twelve referees. In 2003, after

four years of work, the panel reported that they were “99% certain” of the

correctness of the proof, but they could not certify the correctness of the

computer calculations.

In 2003, Hales announced a project Flyspeck to produce a complete formal

proof of KC: “I have no other choice.” Hales picked HOL Light, initial esti-

mates of time: four years. Current estimates: 20 years total to formalize the

proof, which can, however, be reduced by parallel work.

Some results of Flyspeck

November 2005, Annals of Mathematics published the paper

Hales, T. C.“A Proof of the Kepler Conjecture.”

Annals of Mathematics, v. 162, pp. 1065-1185, 2005.

http://www.math.princeton.edu/∼annals/issues/2005/Nov2005/Hales.pdf.

The computational portions will be published in Discrete and Computational

Geometry.

Some famous computer bugs

London ambulance system (1992). A succession of software engineering

failures, especially in project management, caused two failures of London’s

(England) ambulance dispatch system. The repair cost was estimated at

£9m, but it is believed that people died who would not have died if ambulances

had reached them as promptly as they would have without the failures.

Pentium FDIV bug (1994). Cost Intel half a billion, and a lot of agony on

the way to an eventual no-strings-attached recall.

Ariane 5 (1996). The Ariane 5 rocket exploded on its maiden flight in June 4,

1996 because the navigation package was inherited from the Ariane 4 without

proper testing.

USS Yorktown (1998). A crew member of the guided-missile cruiser USS

Yorktown mistakenly entered a zero for a data value, which resulted in a

division by zero. The error cascaded and eventually shut down the ship’s

propulsion system. The ship was dead in the water for several hours because

a program didn’t check for valid input.

Mars Climate Orbiter (1999). The 125 million dollar Mars Climate Orbiter

was lost by NASA. One of the development teams used Imperial measurement

while the other used the metric system of measurement.

Bugs cost about $60 billion annually in the US alone. About a third of that

cost could be eliminated by improving testing.

Formal proofs outside mathematics? In fact, a vast majority of them.

All proof assistants mentioned (but, perhaps, Mizar) have been targeting

verification applications, all have impressive success records.

Massive hires of formal method experts by industry. Harrison (HOL light) is

now Intel’s senior engineer.

In programming languages the state of the art is almost at the point where

an electronic appendix with machine-checked proofs accompanying papers is

fast becoming the norm.

Dual approach to proving, model checking. These two approaches cooperate

and complement each other.

Conclusions

Computer-aided proofs are playing an increasingly prominent role.

Computers bring precision to proof building. Computer-verified proofs are

more reliable than those verified by a human mathematician.

Proof assistants are sometimes the only tool capable of handling an increasing

mathematical complexity beyond the capacity of any human being.

New layer of mathematical and technological challenges in this area.

Reflection mechanisms are vital for heavy duty tasks in formal verification.

It takes a different set of skills to formalize a long proof than to find one.

