
Logical Omniscience as a Computational Complexity Problem

Sergei Artemov
Ph.D. Program in Computer Science

CUNY Graduate Center
New York City, NY, United States

sartemov@gc.cuny.edu

Roman Kuznets
Institut für Informatik und angewandte Mathematik

Universität Bern
Bern, Switzerland

kuznets@iam.unibe.ch

Abstract

The logical omniscience feature assumes that an
epistemic agent knows all logical consequences
of her assumptions. This paper offers a general
theoretical framework that views logical omni-
science as a computational complexity problem.
We suggest the following approach: we assume
that the knowledge of an agent is represented by
an epistemic logical system E; we call such an
agent not logically omniscient if for any valid
knowledge assertion A of type F is known, a
proof of F in E can be found in polynomial time
in the size ofA. We show that agents represented
by major modal logics of knowledge and belief
are logically omniscient, whereas agents repre-
sented by justification logic systems are not log-
ically omniscient with respect to t is a justifica-
tion for F .

1 INTRODUCTION

Modal logic of knowledge contains the epistemic closure
principle in the following modal logical form:

!(F →G)→(!F →!G),

which yields an unrealistic feature called logical omni-
science whereby an agent knows all logical consequences
of her assumptions. In particular, a logically omniscient
agent who knows the rules of chess would also know
whether White has a non-losing strategy, an agent who
knows the product of two primes would also know both
of those primes,1 etc.

The logical omniscience defect, which was identified
in (Fagin and Halpern, 1987; Hintikka, 1962, 1975; Moses,
1988; Parikh, 1987), was studied in (Alechina and Logan,
2002; Aumann, 1986; Elgot-Drapkin et al., 1991; Fagin

1The latter example is due to Joseph Halpern.

et al., 1995; Halpern and Moses, 1992; Konolige, 1986;
Levesque, 1984; Montague, 1970; Moore, 1986; Parikh,
1995, 2005, 2008; Rantala, 1982; Scott, 1970; Shin and
Williamson, 1994; Vardi, 1986; Wansing, 1990), among
others. Most of these papers adjust specific epistemic mod-
els to keep logical omniscience at bay and provide a range
of practical tools to handle this problem.

We adopt a general, complexity-based, view of the logi-
cal omniscience problem. Acquiring knowledge consumes
certain resources (time, space, attention, etc.), and an ade-
quate model of knowledge should reflect this fact in some
degree of generality; the complexity theory provides a rea-
sonable platform for such an approach.

Our approach assumes that for an agent, there is an epis-
temic logical system E in a language capable of represent-
ing epistemic assertions: proofs in E provide constructive
evidence of knowledge. In particular, for each valid asser-
tion F is known, there is a proof of F in E. We attribute
the logical omniscience effect to a situation where for some
‘short’ valid knowledge assertions F is known, it is impos-
sible to feasibly find proofs of F in E.

In (Artemov and Kuznets, 2006), the following Logical
Omniscience Test (LOT) was suggested: an epistemic sys-
tem E is not logically omniscient if for any valid-in-E
knowledge assertion A of type F is known, there is a
proof of F in E, the complexity of which is bounded by
some polynomial in the size of A. LOT was inspired by
the Cook–Reckhow theory of proof complexity (Cook and
Reckhow, 1974; Pudlák, 1998).

In this paper, we suggest a more general Strong Logical
Omniscience Test (SLOT) based on time complexity: an
epistemic system E is not logically omniscient if for any
valid-in-E knowledge assertion A of type F is known, a
proof of F in E can be found in polynomial time in the
size of A.

Both LOT and SLOT connect the size of a knowledge as-
sertion of F with the ability of the system to feasibly pro-
vide an adequate evidence for F . In LOT, the feasibility
measure is the proof length, whereas in SLOT, it is the time

14Copyright is held by the author/owner(s).
TARK ’09, July 6-8, 2009, California
ISBN: 978-1-60558-560-4...$10.00

required to obtain a proof.

We argue that both in LOT and SLOT, the natural complex-
ity measure for proofs and formulas is bit size.

We show that major modal logics of knowledge and be-
lief are logically omniscient with respect to both LOT2
and SLOT, whereas justification logic systems, which
contain evidence assertions t is a justification for F ,
are not logically omniscient. These results agree with
our intuition and could be interpreted as saying that
LOT and SLOT capture the logical omniscience phe-
nomenon and that justification-carrying representation of
knowledge could be used to explain and control logical om-
niscience.

Unlike many semantic approaches that avoid logical om-
niscience by denying the agents some or all deductive
abilities, which results in a trivialized logic of knowl-
edge (Halpern and Pucella, 2007), the justification logic
approach is axiomatic. Built-in justification terms in the
language of justifications symbolically model reasons why
a given fact is known to an agent, which provides a flex-
ible control over the agent’s reasoning without imposing
rigid bounds. At the same time, annotated knowledge as-
sertions help to lower the complexity of knowledge acquisi-
tion by directing the proof search, which allows for a syn-
tactic rather than a semantic representation of the bounds
of the agent’s reasoning. A natural consequence is an in-
creased length of knowledge assertions. Finding a proof is
fast because a justified knowledge assertion t :F contains
the justification term t, which is a symbolic footprint of
such a proof.

We will start by making these notions precise. Let L be a
logic in some language L. We will use the notion of an ab-
stract proof system for L developed in (Cook and Reckhow,
1974); cf. also (Pudlák, 1998):
Definition 1. A proof system for L is a polynomial-time
computable function E : Σ∗ → L from the set of words in
some alphabet, called proofs, onto the set of L-valid formu-
las. In addition, we consider a measure of size for proofs,
which is a function ! : Σ∗ → N, and a measure of size for
individual formulas | · | : L → N.
Definition 2. We will call L an epistemic system if some
subset rL ⊆ L is designated as a set of knowledge asser-
tions. Each knowledge assertion A ∈ rL has an intended
meaning formula F is known for a unique formula F .
Moreover, we require that function OK : rL → L that ex-
tracts the object of knowledge F from a given knowledge
assertion A be

• computable in time polynomial in |A| and
• preserving L-validity: for anyA ∈ rL

L $ A =⇒ L $ OK (A) .

2This was shown in (Artemov and Kuznets, 2006).

We will now define the reflected fragments3 of epistemic
systems.
Definition 3. Let L be an epistemic system with a set of
knowledge assertions rL. The reflected fragment rL is the
set of all valid knowledge assertions: rL = L ∩ rL.

By definition of an epistemic system, OK (rL) ⊆ L.
If OK (rL) = L, the reflected fragment rL is called com-
plete.4 In other words, the reflected fragment is complete if
its knowledge covers all theorems of L.

We may want to consider different types of knowledge as-
sertions for the same logic. Then, there will be several epis-
temic systems associated with one logic. In such cases,
we will specify the reflected fragment for each of them,
e.g., the epistemic system L with respect to the reflected
fragment rL.

It should be noted that in a multiagent setting, it is natu-
ral to consider several reflected fragments simultaneously,
one fragment per agent. Then rL will be the union of indi-
vidual reflected fragments. Since an introduction of many
agents does not have any significant impact on the phe-
nomena discussed, for brevity’s sake, we will only consider
single-agent situations.

We now have all the necessary ingredients to formulate the
logical omniscience tests:
Definition 4. Let E be a proof system for an epistemic
system L, or simply an epistemic proof system where L can
be determined from the context.

• Logical Omniscience Test (LOT): An epistemic
proof system E is not logically omniscient, or
passes LOT, if there exists a polynomial P such that
for any valid knowledge assertion A ∈ rL, there
is a proof of OK (A) in E with the size bounded
by P (|A|).

• Strong Logical Omniscience Test (SLOT): An epis-
temic proof system E is strongly not logically omni-
scient, or passes SLOT, if there is a deterministic al-
gorithm, polynomial in |A|, that, for any valid knowl-
edge assertion A ∈ rL, is capable of restoring a proof
of OK (A) in E.

Both tests are parameterized by the proof system used and
by the way the size of formulas is measured. In addition,
LOT depends on the size measure used for proofs. A dis-
cussion of various proof-size measures and their impact
on LOT can be found in (Artemov and Kuznets, 2006). In
this paper, we focus on the other test, SLOT, for which the
proof-size measure becomes largely irrelevant.

As far as formulas are concerned, we will concentrate on
the two most common measures:

3The name originates from N. Krupski’s studies of such a frag-
ment for justification logic LP.

4Here, OK (X) = {OK (F) | F ∈ X} for X ⊆ rL.

15

• the number of logical symbols in the formula and
• the bit size of the formula

(the latter takes into account indices of sentence letters and
the like). The use of other size measures is sometimes war-
ranted in specialized applications, but their discussion re-
mains outside the scope of this paper. Henceforth, we will
always assume the size of formulas to be measured accord-
ing to one of the two measures above.

The results of this paper hold for both measures. It is also
natural to extend these measures to proofs whenever LOT is
discussed.

2 EPISTEMIC AND JUSTIFICATION
LOGICS

In this section, we will briefly recapture the language of
modal logic and discuss the appropriate notion of reflected
fragment for it. We will also provide an overview of justi-
fication logics, which requires a more extended discussion.

2.1 EPISTEMIC MODAL LOGICS

An (single-agent) epistemic modal logic is a logic in lan-
guage ML, i.e., in propositional language with an addi-
tional construct !F , read as formula F is known. It is,
therefore, quite natural to define the set of knowledge as-
sertions as

rML = {!F | F ∈ ML}

with the associated object of knowledge extraction function

OK (!F) = F .

Thus, according to Definition 3, the reflected fragment of
an epistemic modal logicML is

rML = {!F | ML $!F} .

For all epistemic modal logics of knowledge and many
epistemic modal logics of belief (e.g., K, K4, D, and D4)

ML $!F ⇐⇒ ML $ F . (1)

Therefore,
rML = {!F | ML $ F} . (2)

Note 5. Although (1) does not hold for other common log-
ics of belief, e.g.,K5, K45, and KD45,5 their reflected frag-
ments admit a simple description: for any of them, !F is
derivable iff F is derivable in the corresponding logic of
knowledge, i.e., in the modal logic obtained by adding the
reflection axiom scheme to the given logic of belief. Still
the application of our logical omniscience tests to these log-
ics is problematic since the tests rely on F being derivable.

5We thank an anonymous referee for pointing this out.

One possible solution would be to consider knowledge as-
sertions in a logic of belief (say, KD45) while consider-
ing proofs of the asserted fact in the corresponding logic of
knowledge (S5).

The reflected fragments described by (2) are very well be-
haved. For one thing, they are complete, which is certainly
a desired property. Further, the object of knowledge extrac-
tion function OK (·) for these logics is a one-to-one corre-
spondence between rML and ML. Moreover, both the
function and its inverse are computable in linear time.

It turns out that the flip side of the coin is logical omni-
science. Although the following theorem is an easy corol-
lary of the more general Theorem 21 from Sect. 4, we will
state it here as an assurance that the logical omniscience
tests, LOT and SLOT, conform to our intuition about modal
logics being logically omniscient.
Theorem 6. Let a modal epistemic logic ML satisfy (1)
and be conservative over classical propositional calcu-
lus (CPC).

1. There is no proof system for ML that passes LOT
unless NP=coNP.

2. There is no proof system for ML that passes SLOT
unless P=NP.

In particular, common epistemic modal logics cannot pass
either of the tests modulo the stated complexity theory as-
sumptions. Thus, these modal logics are inherently logi-
cally omniscient with respect to LOT and SLOT.

Proof. If a proof system E for ML passes LOT, then the
derivability of F is equivalent to an existence of anE-proof
of F , polynomial in |OK

−1(F)|, which is the same as be-
ing polynomial in |F | since |OK

−1(F)| = |!F | = |F |+1
for modal epistemic systems. If, in addition, E passes
SLOT, this proof can then be found by a deterministic al-
gorithm, polynomial in |F |.

Guessing a polynomial-size proof and verifying it works as
an NP decision procedure, whereas finding the proof and
verifying it is a P algorithm for decidingML. It remains to
note that any modal logic conservative over CPC is coNP-
hard.

2.2 JUSTIFICATION LOGICS

2.2.1 Axiom Systems

The first justification logic, the Logic of Proofs LP, was
introduced in (Artemov, 1995) to provide a provability se-
mantics for the modal logic S4; see also (Artemov, 2001).
The language JL of LP and other justification logics

t ::= x | c | (t · t) | (t + t) | !t ,

F ::= p | ⊥ | (F → F) | t :F

16

contains an additional operator t : F , read term t serves
as a justification/proof of formula F . Here p stands for a
sentence letter, x for a justification variable, and c for a
justification constant, with a countable supply of each of
the three.

Statements t :F can be seen as refinements of modal state-
ments !F : the latter state that F is known, whereas the
former additionally provide a rationale for such knowledge.
This relationship is demonstrated through the recursively
defined operation of forgetful projection that maps justifi-
cation formulas to modal formulas:

(t :F)◦ = !F ◦ , p◦ = p ,

(F → G)◦ = F ◦ → G◦ , ⊥◦ = ⊥ .

Axioms and rules of LP:

A1. A complete axiomatization of classical propositional
logic by finitely many axiom schemes; rulemodus po-
nens;

A2. Application Axiom s:(F → G) → (t:F → (s · t):G);
A3. Monotonicity Axiom s :F → (s + t) :F ,

t :F → (s + t) :F ;
A4. Factivity Axiom t :F → F ;
A5. Positive Introspection Axiom t :F → !t :t :F ;
R4. Axiom Internalization Rule:

c :A
,

where A is an axiom and c is a justification constant.

LP is an exact counterpart of S4 (note the similarity of their
axioms): namely, let X◦ = {F ◦ | F ∈ X} for a set X of
justification formulas, then

Theorem 7 (Realization Theorem. Artemov, 1995, 2001).
LP

◦ = S4.

Other epistemic modal logics have their own justification
counterparts in the same sense. Counterparts of K, D, T,
K4, and D4 were developed in (Brezhnev, 2000). These
justification logics, named J, JD, JT, J4, and JD4 re-
spectively, are all subsystems of LP and share the A1–
A3 portion of its axiom system. The remaining two axiom
schemes are included dependent on whether or not their
forgetful projections are axioms of the respective modal
logic. In addition, JD and JD4 require a new axiom
scheme:

A7. Consistency t :⊥ → ⊥,

whose forgetful projection is the modal Seriality Axiom.
Complete details can be found in Table 1.

Finally, rule R4 for J4 and JD4 is written the same way as
for LP, but its scope changes from logic to logic along with
the set of axioms. The logics without positive introspec-
tion (axiom A5) still require some restricted form of posi-
tive introspection for constants, which is embedded into the
Axiom Internalization Rule:

Table 1: Axioms for Justification Logics

Justification Present
axiom scheme in logics

A4. t :F → F JT, LP

A5. t :F → !t :t :F J4, JD4, LP

A7. t :⊥ → ⊥ JD, JD4

R4!. Axiom Internalization Rule:
!!· · ·!
︸︷︷︸

n

c : . . . : !!c : !c :c :A
,

where A is an axiom, c is a justification constant,
and n ≥ 0 is an integer.

This form of the axiom internalization rule is used for J,
JD, and JT.
Theorem 8 (Realization Theorem. Brezhnev, 2000).

J◦ = K, JD
◦ = D, JT

◦ = T,

J4
◦ = K4, JD4

◦ = D4.

Justification counterparts also exist for epistemic modal
logics with negative introspection; see (Artemov, 2008;
Pacuit, 2005; Rubtsova, 2006). But too little is known
about these justification systems to try to answer questions
about their logical omniscience.

2.2.2 Constant Specifications

Section 2.2.3 discusses what should be considered the
proper reflected fragment for justification logics. This
question turns out to present more interest than for modal
logics, and it requires a certain flexibility in controlling how
the constants are used. This flexibility is achieved through
the mechanism of constant specifications:
Definition 9. A constant specification CS (for a justifica-
tion logic JL) is a set of instances of rule R4:

CS ⊆ {c :A | A is an axiom of JL,
c is a justification constant} .

With each constant specification CS we will associate a
function from constants to sets of axioms. We will use the
same name for the constant specification and its associated
function: for each constant c,

CS(c) = {A | c :A ∈ CS} .

Given a constant specification CS, the logic JLCS is the
result of replacing R4 or R4! by their relativized versions,
i.e., respectively by

R4CS .
c :A ∈ CS

c :A
;

17

R4!CS .
c :A ∈ CS

!!· · · !
︸︷︷︸

n

c : . . . : !!c : !c :c :A
,

where n ≥ 0 is an integer.

For the Realization Theorem to hold, i.e., for (JLCS)◦ =
ML for the correspondingmodal logicML = JL

◦, it is nec-
essary and sufficient that CS be axiomatically appropriate:
Definition 10. A constant specification CS is called:

• axiomatically appropriate6 if
⋃

c

CS(c) = {A | A is an axiom of JL};

• finite if CS is finite as a set;
• schematic7 if set CS(c) consists of several (maybe zero)
axiom schemes for each constant c;

• schematically injective8 if it is schematic and CS(c) con-
sists of at most one axiom scheme for each constant c.

The following is the fundamental property of justification
logics, which is closely related to the Realization Theorem:
Lemma 11 (Constructive Necessitation. Artemov, 1995,
2001). Let CS be an axiomatically appropriate constant
specification for a justification logic JL. For any theorem F
of JLCS , there exists a +-free ground9 justification term s
such that JLCS $ s :F .

2.2.3 Reflected Fragments of Justification Logics

We will now try to answer the question of what is the right
form of knowledge assertions in justification language. The
first answer that comes to mind is, by analogy with modal
logics,

rJL = {t :F | t is a term, F is a formula}

with the associated object of knowledge extraction function

OK (t :F) = F .

In this case, the reflected fragment rJLCS is complete iff
CS is axiomatically appropriate. So it seems that any
such JLCS can be considered an epistemic system.

As was argued in (Artemov and Kuznets, 2006), justifica-
tion terms are intended to serve as a persuasive reason for
the knowledge of a formula. In this respect, knowledge as-
sertions of type t : F are not quite satisfactory since both t
and F may contain justification constants, the meanings of
which are given only in the corresponding constant speci-
fication. But an infinite constant specification may contain

6The term is due to Fitting.
7The term is due to Milnikel although the idea goes back to

Mkrtychev.
8The term is due to Milnikel.
9A justification term is called ground if it contains no occur-

rences of justification variables.

an infinite amount of information, and so can each knowl-
edge assertion t : F . Naturally, infinite information in one
formula can cause logical omniscience. Hence, the follow-
ing
Definition 12. The set of comprehensive knowledge asser-
tions is defined by

crJL = {
∧

CS → t :F | t is a term, F is a formula,

CS is a finite constant specification}

with the associated knowledge extraction function

OK

(∧

CS → t :F
)

= F .

In this case, the comprehensive reflected fragment for a jus-
tification logic JL is defined as

crJL =
{∧

CS → t :F | JL0 $
∧

CS → t :F
}

,

where JL0 = JL∅ is JL with the empty constant specifica-
tion.

Note that comprehensive reflected fragments are CS-
independent. Since each JL-derivation uses the Axiom In-
ternalization Rule at most finitely many times, each JL-
derivation of t : F can be turned into a JL0-derivation
of

∧

CS → t :F for some finite CS:
Lemma 13. Let JL ∈ {J, JD, JT, J4, JD4, LP}. Then,
JL $ t :F iff JL0 $

∧

CS → t :F iff rJLCS $ t :F
for some finite constant specification CS.

As a consequence of this lemma and Constructive Neces-
sitation (for JL), comprehensive reflected fragments are al-
ways complete.

In light of Lemma 13, a comprehensive reflected fragment
can also be seen as a combination of rJLCS for all possible
finite CS. None of them are complete by themselves, but
their combination is.

It should also be noted that whenever reflected frag-
ment rJLCS is complete, it has a smaller complete subfrag-
ment:

rJL
−
CS = {t :F ∈ rJLCS | t does not contain +} .

The completeness of such +-free reflected fragments fol-
lows from the completeness of rJLCS and Constructive Ne-
cessitation (Lemma 11).

3 COMPLEXITY GUIDE TO
REFLECTED FRAGMENTS OF JL

In this section, we will discuss complexity of various re-
flected fragments from Sect. 2.2.3. As will be shown in

18

Table 2: ∗-Calculi
Calculus Axioms and rules Used for
∗CS ∗!CS, ∗A2, ∗A3 rJ, rJD, rJT
∗!CS ∗CS, ∗A2, ∗A3, ∗A5 rJ4, rJD4, rLP

Sect. 4, knowing their complexity is the key to determining
whether an epistemic proof system is logically omniscient.

The study of reflected fragments was pioneered in (Krup-
ski, 2006), where rLPwas studied, axiomatized, and shown
to be in NP. His method was extended to rJ, rJD, rJT,
rJ4, and rJD4 in (Kuznets, 2008). The decision procedure
for these reflected fragments is based on their axiomatiza-
tions by the so-called ∗-calculi of the following two types:
∗CS and ∗!CS . The difference between them stems from
the presence/absence of general positive introspection in
the corresponding justification logic. Both calculi share the
following rules:

∗A2. Application Rule
s : (F → G) t :F

s · t :G
;

∗A3. Sum Rule
s :F

(s + t) :F
,

t :F

(s + t) :F
.

The ∗CS-calculus for a given CS is obtained by adding ax-
ioms

∗!CS. !!· · · !
︸︷︷︸

n

c : . . . : !!c : !c :c :A,

where c :A ∈ CS and n ≥ 0 is an integer.

Alternatively, for the logics with positive introspection,
J4CS , JD4CS , and LPCS , an additional rule is required:

∗A5. Positive Introspection Rule
t :F

!t :t :F
,

while the axioms have a simpler form:

∗CS. c :A, where c :A ∈ CS.

The resulting calculus is called ∗!CS-calculus. Both calculi
are summarized in Table 2.
Theorem 14 (Krupski, 2006; Kuznets, 2008). Let CS be
a constant specification for a justification logic JL.
1. If JL ∈ {J, JD, JT}, rJLCS $ t :F ⇐⇒ ∗CS $ t :F ;
2. If JL ∈ {J4, JD4, LP}, rJLCS $ t :F ⇐⇒ ∗!CS $ t :F .

Thus, to determine whether t : F is valid, it is necessary
and sufficient to consider all derivations in the respective
∗-calculus that can yield t : F as their conclusion. The ∗-
calculi have a useful property: each rule strictly increases
the size of the outer term. Moreover, each outer term in
any ∗-derivation of t : F is a subterm of t. Note also that
the rules ∗A2 and ∗A5 are deterministic, i.e., their premises
uniquely determine their conclusions. Although the same
does not hold for the rule ∗A3 (premise s :G may yield in-
finitely many conclusions (s + s′) : G and (s′ + s) : G),

given a target formula t : F , it is sufficient to consider
only subterms of t, which effectively makes ∗A3 quasi-
deterministic.

This observation suggests a method for exhausting all po-
tential derivations of t : F , namely: 1) consider all possi-
ble ∗-derivation axioms that assign axioms of JL to occur-
rences of constants in t; 2) for each such initial assignment,
build up a derivation from these axioms until one or sev-
eral formulas are assigned to t itself; and 3) compare these
formulas with F . In general, there may be infinitely many
axioms assigned to a constant. So the efficiency of this al-
gorithm, as well as whether it decides rJLCS or just recur-
sively enumerates it, depends on the ability to bundle all
axioms assigned to a constant into finitely many construc-
tive sets, which allows for an effective application of the
deterministic rules of the ∗-calculus to these “bundles.” In
particular, the following theorem is the result of bundling
all axioms into finitely many axiom schemes.
Theorem 15 (Krupski, 2006; Kuznets, 2008). Let CS be a
schematic10 constant specification for a justification logic
JL ∈ {J, JD, JT, J4, JD4, LP}. Then, rJLCS is in NP.

This bundling works because each rule of ∗-calculi ap-
plied to scheme(s) produces a scheme that can be efficiently
computed.

In some cases, see (Kuznets, 2005), rJLCS is undecidable;
therefore, bundling cannot always be achieved efficiently.

As proved in (Buss and Kuznets, 2009), for certain
schematic CS, namely for axiomatically appropriate and
schematically injective ones, the reflected fragments rJLCS

are NP-complete. But in other cases, the complexity can
be lowered, which will prove instrumental in finding epis-
temic systems that pass SLOT.

A good model of rJLCS that is in P is presented by the
case of finite CS. To facilitate a concise description of the
decision algorithm, we extend function CS(·) to all terms
as follows:

CS(t) = {F | $∗ t :F} ,

where $∗ stands for derivation in the respective ∗-calculus.
Note that CS(c) = {A | c :A ∈ CS} = {A | $∗ c :A}.
Theorem 16. Let CS be a finite constant specification for
a justification logic JL ∈ {J, JD, JT, J4, JD4, LP}. Then
rJLCS is in P.

Proof. We will first consider the case of ∗!CS-calculus. Let
t :F be the knowledge assertion given to prove or disprove.
There are only finitely many initial assignments of axioms
to constants that occur in t. The number and size of ax-
ioms assigned to each constant do not depend on t: they

10Here and in Theorem 18, it is assumed that CS(·) is com-
putable in polynomial time.

19

are bounded by the size of CS. Therefore, it is possible
to bundle together all axioms from CS(c) and assign them
to c in a single initial assignment. This initial assignment
will haveO(1) formulas of sizeO(1) assigned to each con-
stant c. The deterministic rules of the ∗-calculi applied to
finite sets of formulas can be formulated as:

CS(s1 · s2) = {G | (∃F)(F ∈ CS(s2)∧

F → G ∈ CS(s1))} , (3)
CS(s1 + s2) = CS(s1) ∪ CS(s2) , (4)

CS(!s) = {s :F | F ∈ CS(s)} . (5)

Note that cases (3) and (4) do not increase the size of as-
signed formulas: in the former case, eachG ∈ CS(s1·s2) is
smaller than some F → G ∈ CS(s1). Thus, the size of as-
signed formulas is only increased in (5) by |s|+1 ≤ |t|+1
each. Since there are at most |t| such steps, for any sub-
term s of t, the size of all formulas in CS(s) is bounded by
O(1) + |t|(|t| + 1) = O(|t|2).

As for the number of formulas, |CS(s)|, assigned to each
subterm s, it is not increased in cases (3) or (5): in the
former case |CS(s1 · s2)| ≤ |CS(s1)|. In case (4), clearly,
|CS(s1 + s2)| ≤ |CS(s1)| + |CS(s2)|. Therefore, we have
|CS(s)| = O(|s|).

Since each subterm s is assigned at most O(|s|) formu-
las of size at most O(|t|2), the total size of all formulas
in CS(s) is O(|t|3). This is the maximum size of the input
for the subroutine that computes CS(s) for each s. Since
each step of this subroutine is polynomial and the subrou-
tine is applied O(|t|) times, the overall complexity is also
polynomial.

The only difference for the ∗CS-calculus is that case (5)
must be restricted to terms of form !· · · !

︸︷︷︸

n

c, where c is a con-

stant and n ≥ 0 is an integer. Such checks can also be
performed polynomially.

It is interesting to observe what differentiates the finite
number of axioms assigned to a constant in Theorem 16
from the finite number of schemes in Theorem 15 to cause a
jump in complexity from P to NP. In both cases, the number
of formulas/schemes assigned to s grows with the size of s.
But the number of schemes grows exponentially, mainly
due to case (3), which, as we have shown, does not increase
the number of formulas at all. The reason is the behavior of
the rule ∗A2: it generally fails when used on formulas and
generally succeeds when applied to schemes. More impor-
tantly, in the case of formula assignment, the left premise
of the rule together with the outer term of the right premise
uniquely determine the successful conclusion, if any. On
the contrary, in the case of scheme assignment, k schemes
in the left premise and l schemes in the right in general, by
way of unification, yield kl schemes assigned in the con-
clusion. This leads to an exponential blow-up and the ne-

cessity of non-deterministically choosing one scheme at a
time.

As we will see in Sect. 4, P is the desired complexity
for a reflected fragment. Unfortunately, reflected frag-
ments rJLCS are not complete for any finite CS . This is
where comprehensive knowledge assertions come to the
rescue. (They were already used in (Artemov and Kuznets,
2006) to prove that JL passes LOT with respect to the
Hilbert proof system.)
Theorem 17. Let JL ∈ {J, JD, JT, J4, JD4, LP}. Then
crJL is in P.

Proof. Given the second equivalence in Lemma 13, the
only difference from the situation in Theorem 16 is that
here, CS is given as part of the input rather than being hard-
wired into the algorithm. Thus, given a knowledge asser-
tionA =

∧

CS → t :F , the number of axioms assigned by
the algorithm to each constant occurring in t and their size
areO(|A|) rather thanO(1). A careful scrutiny of the proof
of Theorem 16 shows that in this case the size of formulas
assigned to subterms of t and their number per subterm are
both O(|A|2).

It is also possible to avoid an exponential blow-up while
dealing with schemes.
Theorem 18. Let CS be a schematically injective
constant specification for a justification logic JL ∈
{J, JD, JT, J4, JD4, LP}. Then, rJL−

CS is in P.

Proof. It is sufficient to apply Krupski’s original algo-
rithm. Each branch of his non-deterministic algorithm re-
sults from choosing one axiom scheme for each constant
and one of the two subterms for each occurrence of s1 + s2

in the given outer term t. Computation along each branch
is then deterministic and polynomial. In our case, the con-
stant specification is schematically injective, so there is
only one axiom scheme assigned to each constant. In ad-
dition, there are no +’s in t. Thus, Krupski’s algorithm
run on any knowledge assertion from rJL

−
CS is determinis-

tic and polynomial.

4 MAIN RESULTS

In this section, we will outline the relationship between the
complexity of a reflected fragment of an epistemic system
and the logical omniscience of this system.
Theorem 19. Let rL be a complete reflected fragment of an
epistemic system L.

1. If rL is in NP, there exists a proof system for L for
which it passes LOT.

2. If rL is in P, there exists a proof system for L for which
it passes SLOT.

20

Proof. In both cases, there must exist a (non-)deterministic
Turing machine M for deciding the given complete re-
flected fragment.

1. In the case of the nondeterministic machine M , we
construct the proof system as follows: each proof con-
sists of an element A ∈ rL followed by a sequence of
choices made by M given A as its input. Clearly, a de-
terministic polynomial-time Turing machine E can emu-
late the non-deterministicM given the set of choices along
one of M ’s branches. This deterministic machine E out-
puts OK (A) if the corresponding branch of M ’s compu-
tation has been successful. Otherwise, E outputs a fixed
valid formula. Since OK (·) is polynomially computable,
the function computed by E is, too. Moreover,E is a func-
tion onto L due to completeness of rL. It remains to note
that for each valid knowledge assertion A ∈ rL, there must
exist at least one successful run of M , polynomial in |A|
and, as such, involving only polynomially many choices.
Therefore, there exists a proof of OK (A) in the proof sys-
tem we have constructed, polynomial in |A|.

2. In the case of the deterministic Turing machine M , the
proof system can be made even simpler. The proofs are just
knowledge assertions from rL. Given such a knowledge
assertion A ∈ rL, E first runs the given M to determine
whether A is valid. If M succeeds, E outputs OK (A).
Otherwise, E outputs a fixed valid formula. Again, this is
clearly a proof system. Since a proof of OK (A) is nothing
butA, finding the proof ofOK (A) givenA is trivial, while
verifying that it is a proof can be done in polynomial time
by the given deterministic Turing machineM .

Corollary 20.

1. Each JL ∈ {J, JD, JT, J4, JD4, LP} as an epistemic
system with comprehensive reflected fragment crJL

passes SLOT (with respect to a certain proof system).

2. If CS is a schematically injective and axiomati-
cally appropriate constant specification for JL ∈
{J, JD, JT, J4, JD4, LP}, then JLCS as an epis-
temic system with +-free reflected fragment rJL

−
CS

passes SLOT (with respect to a certain proof system).

3. If CS is a schematic axiomatically appropriate con-
stant specification for JL ∈ {J, JD, JT, J4, JD4, LP},
then JLCS as an epistemic system with simple reflected
fragment rJLCS passes LOT (with respect to a certain
proof system).

In the last two statements, we assume that CS(·) is com-
putable in polynomial time.

Proof. The first two statements follow from Theorem 19.2
combined with Theorem 17 for the first, or Theorem 18
for the second. The third statement follows from Theo-
rems 19.1 and 15.

The converse to Theorem 19 does not in general hold. The
fact that an epistemic proof system passes (S)LOT enables
us to guess/find proofs of OK (A) feasible in |A|. But
guessing/computingA ∈ OK

−1(F) for a given formula F
may not be feasible or even possible. Thus, givenF and the
non-logically omniscient proof system, it is unclear how to
obtain a proof of F . However, the following partial con-
verse holds, an instance of which is Theorem 6.
Theorem 21 (Partial converse to Theorem 19). Let L be an
epistemic system in language L with a complete reflected
fragment rL.

1. Let L pass LOT with respect to some proof system. If
for some polynomial P ,

|A| ≤ P (|OK (A)|) (6)

for all A ∈ rL, then L is in NP.
2. Let L pass SLOT with respect to some proof system. If

there exists a function K : L → rL, computable by a
deterministic polynomial algorithm such that, for any
valid formula F ∈ L, it outputs a valid knowledge
assertion about F , i.e., K(F) ∈ OK

−1(F) ∩ rL for
any F ∈ rL, then L is in P.

Proof. 1. By completeness of rL, for every valid F ∈ L,
there must be a validA ∈ rL such thatOK (A) = F . Since
L passes LOT, there must be a proof of F polynomial in the
size of thisA. But according to (6), |A| itself is polynomial
in |F |. Hence, there is a proof of F polynomial in |F | that
can be non-deterministically guessed and then determinis-
tically verified by the given proof system.

2. Given F ∈ L, first, A = K(F) is computed. Then, the
polynomial algorithm provided by SLOT is used to con-
struct a proof of F from A. If F is valid, then so is A;
therefore, the algorithm outputs an actual proof of F that
can be verified by the given proof system. Thus, if the ver-
ification is not successful, it means that F is not valid.

5 CONCLUSIONS

Both Logical Omniscience Test (LOT) and Strong Logical
Omniscience Test (SLOT) label agents whose knowledge
is described by epistemic modal logics as logically om-
niscient (given some widely accepted complexity conjec-
tures), whereas agents corresponding to various systems of
justification logic with natural constant specifications have
been proven to be free of the logical omniscience defect.
These results are consistent with intuition and provide an
argument in favor of adopting LOT and SLOT as reason-
able logical omniscience tests.

The proposed theory demonstrates where to look for practi-
cal solutions to the logical omniscience problem: find jus-
tification languages, perhaps model specific, with concise
annotations of reasons that would yield feasible witnesses

21

of knowledge. Consider systems that contain both justi-
fied and the usual modal-style presentation of knowledge;
use modal epistemic operators for ‘potential knowability’
and justified knowledge assertions for ‘real knowledge’;
see (Artemov and Nogina, 2005).

The idea to view Logical Omniscience as a complexity
problem can, perhaps, be applied to other presentations of
knowledge as well.

Acknowledgments

S. Artemov is supported in part by National Science Foun-
dation Grant 0830450; R. Kuznets is supported by Swiss
National Science Foundation Grant 200021–117699. We
thank Jonathan Zvesper and the audience of PALMYRVIII
for their inspiring questions and remarks. We are grateful
to the anonymous referees for concise but informative re-
views. We thank Karen Kletter and Galina Savukova for
proofreading and editing various versions of this paper.

References

Natasha Alechina and Brian Logan. Ascribing beliefs to
resource bounded agents. In Proceedings of the first in-
ternational joint conference on Autonomous Agents and
Multiagent Systems, AAMAS 2002, Bologna, Italy, July
15–19, 2002, Part 2, pages 881–888. ACM Press, 2002.

Sergei [N.] Artemov and Roman Kuznets. Logical om-
niscience via proof complexity. In Zoltán Ésik, edi-
tor, Computer Science Logic, 20th International Work-
shop, CSL 2006, 15th Annual Conference of the EACSL,
Szeged, Hungary, September 25–29, 2006, Proceedings,
volume 4207 of Lecture Notes in Computer Science,
pages 135–149. Springer, 2006.

Sergei [N.] Artemov and Elena Nogina. Introducing
justification into epistemic logic. Journal of Logic and
Computation, 15(6):1059–1073, December 2005.

Sergei N. Artemov. Operational modal logic. Technical
Report MSI 95–29, Cornell University, December 1995.

Sergei N. Artemov. Explicit provability and construc-
tive semantics. Bulletin of Symbolic Logic, 7(1):1–36,
March 2001.

Sergei [N.] Artemov. The logic of justification. The Re-
view of Symbolic Logic, 1(4):477–513, December 2008.

Robert J. Aumann. Reasoning about knowledge in
economics (invited talk—abstract only). In Joseph Y.
Halpern, editor, Theoretical Aspects of Reasoning about
Knowledge, Proceedings of the 1986 Conference, March
19–22, 1986, Monterey, California, page 251. Morgan
Kaufmann, 1986.

Vladimir N. Brezhnev. On explicit counterparts of
modal logics. Technical Report CFIS 2000–05, Cornell
University, 2000.

Samuel R. Buss and Roman Kuznets. The NP-
completeness of reflected fragments of justification log-
ics. In Sergei [N.] Artemov and Anil Nerode, edi-
tors, Logical Foundations of Computer Science, Inter-
national Symposium, LFCS 2009, Deerfield Beach, FL,
USA, January 3–6, 2009, Proceedings, volume 5407
of Lecture Notes in Computer Science, pages 122–136.
Springer, 2009.

Stephen Cook and Robert Reckhow. On the lengths
of proofs in the propositional calculus (preliminary ver-
sion). In Conference Record of Sixth Annual ACM Sym-
posium on Theory of Computing, Papers Presented at
the Symposium, Seattle, Washington, April 30–May 2,
1974, pages 135–148. ACM Press, 1974.

Jennifer J. Elgot-Drapkin, Michael Miller, and Donald
Perlis. Memory, reason, and time: The step-logic ap-
proach. In Robert Cummins and John Pollock, editors,
Philosophy and AI, Essays at the Interface, chapter 4,
pages 79–104. MIT Press, 1991.

Ronald Fagin and Joseph Y. Halpern. Belief, awareness,
and limited reasoning. Artificial Intelligence, 34(1):39–
76, December 1987.

Ronald Fagin, Joseph Y. Halpern, and Moshe Y. Vardi.
A nonstandard approach to the logical omniscience
problem. Artificial Intelligence, 79(2):203–240,Decem-
ber 1995.

Joseph Y. Halpern and Yoram Moses. A guide to com-
pleteness and complexity for modal logics of knowledge
and belief. Artificial Intelligence, 54(3):319–379, April
1992.

Joseph Y. Halpern and Riccardo Pucella. Dealing with
logical omniscience. In Dov Samet, editor, Proceed-
ings of the 11th conference on Theoretical Aspects of
Rationality and Knowledge (TARK’07), pages 169–176,
Brussels, Belgium, June 25–27, 2007. ACM.

Jaakko Hintikka. Knowledge and Belief: An Introduc-
tion to the Logic of the Two Notions. Cornell University
Press, 1962.

Jaakko Hintikka. Impossible possible worlds vindicated.
Journal of Philosophical Logic, 4(3):475–484, August
1975.

Kurt Konolige. A Deduction Model of Belief. Re-
search Notes in Artificial Intelligence. Morgan Kauf-
mann, 1986.

22

Nikolai V. Krupski. On the complexity of the reflected
logic of proofs. Theoretical Computer Science, 357(1–
3):136–142, July 2006.

Roman Kuznets. On decidability of the logic of proofs
with arbitrary constant specifications. In 2004 Annual
Meeting of the Association for Symbolic Logic, Carnegie
Mellon University, Pittsburgh, PA, May 19–23, 2004,
volume 11(1) of Bulletin of Symbolic Logic, page 111.
Association for Symbolic Logic, March 2005. Abstract.

Roman Kuznets. Complexity Issues in Justification
Logic. PhD thesis, CUNY Graduate Center, May 2008.

Hector J. Levesque. A logic of implicit and explicit be-
lief. In Ronald J. Brachman, editor, Proceedings of the
Fourth National Conference on Artificial Intelligence,
AAAI 1984, Austin, Texas, August 6–10, 1984, pages
198–202. AAAI Press, 1984.

Richard Montague. Universal grammar. Theoria,
36:373–398, 1970.

Robert C. Moore. Reasoning about knowledge in ar-
tificial intelligence (invited talk—abstract only). In
Joseph Y. Halpern, editor, Theoretical Aspects of Rea-
soning about Knowledge, Proceedings of the 1986 Con-
ference, March 19–22, 1986, Monterey, California,
page 81. Morgan Kaufmann, 1986.

Yoram Moses. Resource-bounded knowledge. In
Moshe Y. Vardi, editor, Proceedings of the Second
Conference on Theoretical Aspects of Reasoning about
Knowledge, March 7–9, 1988, Pacific Grove, Califor-
nia, pages 261–275. Morgan Kaufmann, 1988.

Eric Pacuit. A note on some explicit modal logics. In
Proceedings of the 5th Panhellenic Logic Symposium,
pages 117–125, Athens, Greece, July 25–28, 2005. Uni-
versity of Athens.

Rohit Parikh. Knowledge and the problem of logi-
cal omniscience. In Zbigniew W. Ras and Maria Ze-
mankova, editors, Methodologies for Intelligent Sys-
tems, Proceedings of the Second International Sym-
posium, ISMIS 1987, Charlotte, North Carolina,
USA, October 14–17, 1987, pages 432–439. North-
Holland/Elsevier, 1987.

Rohit Parikh. Logical omniscience. In Daniel Leivant,
editor, Logic and Computational Complexity, Interna-
tional Workshop LCC ’94, Indianapolis, IN, USA, Octo-
ber 13–16, 1994, Selected Papers, volume 960 of Lec-
ture Notes in Computer Science, pages 22–29. Springer,
1995.

Rohit Parikh. Logical omniscience and common knowl-
edge; WHAT do we know and what do WE know? In
Ron van der Meyden, editor, Proceedings of the Tenth

Conference on Theoretical Aspects of Rationality and
Knowledge (TARK’05), pages 62–77, Singapore, June
10–12, 2005. National University of Singapore.

Rohit Parikh. Sentences, belief and logical omniscience,
or what does deduction tell us? The Review of Symbolic
Logic, 1(4):459–476, December 2008.

Pavel Pudlák. The lengths of proofs. In Samuel R. Buss,
editor, Handbook of Proof Theory, volume 137 of Stud-
ies in Logic and the Foundations of Mathematics, chap-
ter VIII, pages 547–637. Elsevier, 1998.

Veikko Rantala. Impossible worlds semantics and log-
ical omniscience. Acta Philosophica Fennica, 35:106–
115, 1982.

Natalia Rubtsova. Evidence reconstruction of epistemic
modal logic S5. In Dima Grigoriev, John Harrison, and
Edward A. Hirsch, editors, Computer Science — Theory
and Applications, First International Computer Science
Symposium in Russia, CSR 2006, St. Petersburg, Russia,
June 8–12, 2006, Proceedings, volume 3967 of Lecture
Notes in Computer Science, pages 313–321. Springer,
2006.

Dana Scott. Advice in modal logic. In K. Lambert, ed-
itor, Philosophical Problems in Logic, pages 143–173.
Reidel, 1970.

Hyun Song Shin and Timothy Williamson. Represent-
ing the knowledge of Turing machines. Theory and De-
cision, 37(1):125–146, July 1994.

Moshe Y. Vardi. On epistemic logic and logical omni-
science. In Joseph Y. Halpern, editor, Theoretical As-
pects of Reasoning about Knowledge, Proceedings of
the 1986 Conference, March 19–22, 1986, Monterey,
California, pages 293–305. Morgan Kaufmann, 1986.

Heinrich Wansing. A general possible worlds frame-
work for reasoning about knowledge and belief. Studia
Logica, 49(4):523–539, December 1990.

23

