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Abstract

In 1933 G�odel introduced a modal logic of provability (S4) and left open the problem

of a formal provability semantics for this logic. Since then numerous attempts have been

made to give an adequate provability semantics to G�odel's provability logic with only

partial success. In this paper we give the complete solution to this problem in the Logic

of Proofs (LP). LP implements G�odel's suggestion (1938) of replacing formulas \F is

provable" by the propositions for explicit proofs \t is a proof of F" (t : F ). LP admits

the reection of explicit proofs t : F ! F thus circumventing restrictions imposed on

the provability operator by G�odel's second incompleteness theorem. LP formalizes the

Kolmogorov calculus of problems and proves the Kolmogorov conjecture that intuitionistic

logic coincides with the classical calculus of problems.

Introduction

In 1932 Kolmogorov ([16]) gave an informal description of the calculus of problems in classical

mathematics and conjectured that it coincides with intuitioinistic propositional logic Int.

Kleene realizability [15], Medvedev �nite problems [23] and its variants ([36], [37]) are regarded

(cf. [34],[10],[36],[37]) as formalizations of Kolmogorov's calculus of problems. However, they

give only necessary conditions for Int, each of them realizes some formulas not derivable in

Int.

In 1933 G�odel ([12]) de�ned Int on the basis of the notion of proof in a classical math-

ematical system, where \proof" may be regarded as a special case of Kolmogorov's \prob-

lem solution". Namely, G�odel introduced the logic of provability (coinciding with the modal

logic S4) and constructed a conservative embedding of Int into S4. S4 has all axioms and

rules of classical logic in the modal propositional language along with the axioms 2F ! F ,

2(F!G)!(2F!2G), 2F!22F , and the necessitation rule F ` 2F . In [12] no formal

provability semantics for S4 was suggested. The straightforward interpretation of 2F as the

arithmetical formula Provable(F )

\there exists a number x which is the code of a proof of F".

leads to logics of formal provability incompatible with S4 (cf.[7],[8]).
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Let us consider the �rst order arithmetic PA. If F is the boolean constant false,

then the S4-axiom 2F!F becomes a statement Consis PA, expressing the con-

sistency of PA. By necessitation, S4 derives 2(2F ! F ). The latter formula

expresses the assertion that Consis PA is provable in PA, which contradicts the

Second G�odel Incompleteness Theorem.

The issue of a provability model for S4 was studied by G�odel [13], Lemmon [20], Myhill

[27],[28], Kripke [18], Montague [26], Mints [25], Kuznetsov & Muravitskii [19], Goldblatt

[14], Boolos [7],[8] Shapiro [30],[31], Buss [9], Artemov [1], and many others. However, the

problem of a formal provability semantics for S4 has remained open.

A principal di�culty here is caused by the existential quanti�er over proofs in Provable(F ).

Indeed, the interpretation of the formula 2(2F!F ) is

"it is provable that \Provable(F ) implies F" "

Provability in PA can be characterized as \true in all models of PA", including the non-

standard ones. In a given model of PA an element that instantiates the variable x from the

existential quanti�er for the code of a proof of F in Provable(F ) may be nonstandard. In

such a case Provable(F ) is true in this model, but there is no \real" PA-derivation behind

such an x. So, PA is not able to conclude that F is true from Provable(F ) is true since the

latter formula does not necessarily deliver a proof of F .

This consideration suggests replacing the provability formula Provable(F ) by the formula

for proofs Proof(t,F) and the existential quanti�er on proofs in the former by Skolem style

operations on proofs in the latter. Such a conversion helps avoid evaluation of proofs by

nonstandard numbers. Some of this operations come from the proof of G�odel's second incom-

pleteness theorem. Within that proof it was established that

PA ` Provable(F ! G) ^ Provable(F ) ! Provable(G):

This formula is a \forgetful" version of the following theorem.

For some computable function m(x; y)

PA ` Proof (s; F!G) ^ Proof (t; F ) ! Proof (m(s; t); G):

A similar decoding can be done for another lemma from G�odel's second incompleteness the-

orem PA ` Provable(F )! Provable(Provable(F )).

For some computable function c(x)

PA ` Proof (t; F )! Proof (c(t);Proof (t; F )):
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In his Lecture at Zilsel's, 1938, (published in 1995 in [13], see also [29]) G�odel sketched

a constructive version of S4 with the basic proposition \t is a proof of F" and operations

similar to m(x; y) and c(x). This G�odel's suggestion su�ces to justify the reexivity principle

along with the necessitation rule. However, the question about a complete set of axioms for a

logic of proofs, as well as the question about its ability to realize the entire S4 has remained

unanswered. It turned out that G�odel's sketch of 1938 lacks the operation \+", without which

a realization of S4 cannot be completed (see Comment 6.6).

In this paper we implement G�odel's suggestion of 1938 and �nd the Logic of Proofs (LP)

1

in the propositional language with an extra basic proposition t : F for \t is a proof of F".

We �nd axiom systems for LP in Hilbert and Gentzen format, establish its soundness and

completeness with respect to the standard provability semantics. We establish that LP realizes

the entire S4 by assigning explicit proof terms to the modalities in every S4-derivation. This

yields a positive solution to the problem of �nding the intended provability semantics for S4

which in turn proves Kolmogorov's conjecture of 1932 that intuitionistic logic Int is nothing

but the calculus of problems for systems based on classical logic.

Among the related works there is [11], where Gabbay's Labelled Deductive Systems may

serve as a natural framework for LP . The Logic of Proofs may also be regarded as a basic

epistemic logic with explicit justi�cations; a problem of �nding such systems was raised by

van Benthem in [6]. Intuitionistic Type Theory by Martin-L�of [21], [22] also makes use of the

format t :F with its informal provability reading.

1 Logic of Proofs

1.1 De�nition. The language of Logic of Proofs (LP) contains

the usual language of classical propositional logic

proof variables x

0

; : : : ; x

n

; : : :, proof constants a

0

; : : : ; a

n

; : : :

functional symbols: monadic !, binary � and +

operator symbol of the type \term : formula".

We will use a; b; c; : : : for proof constants, u; v; w; x; y; z; : : : for proof variables, i; j; k; l;m;n

for natural numbers. Terms are de�ned by the grammar

p ::= x

i

j a

i

j !p j p

1

� p

2

j p

1

+ p

2

We call these terms proof polynomials and denote them by p,r,s,t: : :. By analogy we refer to

constants as coe�cients. Constants correspond to proofs of a �nite �xed set of propositional

schemas.

1

The Logic of Proofs LP was found by the author independently of G�odel's paper [13]. The �rst presentations

of LP took place at the author's talks at the conferences in M�unster and Amsterdam in 1994. Preliminary

versions of LP along with the completeness theorem, realization of S4 and �-calculi in LP appeared in Technical

Reports [4] and [5]. Note that despite its title the paper [3] does not introduce LP.
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Using t to stand for any term and S for any propositional letter, the formulas are de�ned

by the grammar

� ::= S j �

1

!�

2

j �

1

^�

2

j �

1

_�

2

j :� j t :�

The intended semantics for p : F is \p is a proof of F", which will be formalized in the

next section. Note that a proof system which provides a formal semantics for p : F is not

necessarily deterministic, i.e. p may be a proof of several di�erent F `s.

1.2 De�nition. The system LP

0

. Axioms:

A0. Axioms of classical propositional logic in the language of LP

A1. t :F ! F \veri�cation"

A2. t : (F ! G) ! (s :F ! (t�s) :G) \application"

A3. t :F ! !t : (t :F ) \proof checker"

A4. s :F ! (s+t) :F , t :F ! (s+t) :F \choice"

Rule of inference:

R1.

� ` F ! G � ` F

� ` G \modus ponens".

The system LP is LP

0

plus the rule

R2. if A is an axiom A0 { A4, and c a proof constant, then ` c :A \necessitation"

A Constant Speci�cation (CS) is a �nite set of formulas c

1

: A

1

; : : : ; c

n

: A

n

such that c

i

is

a constant, and F

i

an axiom A0 { A4. Each derivation in LP naturally generates the CS

consisting of all formulas introduced in this derivation by the necessitation rule.

1.3 Comment. Proof constants in LP stand for proofs of \simple facts", namely propo-

sitional axioms and axioms A1 { A4. In a way the proof constants resemble atomic con-

stant terms (combinators) of typed combinatory logic (cf. [35]). A constant c

1

speci�ed as

c

1

: (A! (B ! A)) can be identi�ed with the combinator k

A;B

of the type A! (B ! A).

A constant c

2

such that c

2

: [(A! (B! C)) ! ((A! B)! (A! C))] corresponds to the

combinator s

A;B;C

of the type (A! (B!C)) ! ((A!B)! (A!C)). The proof variables

may be regarded as term variables of combinatory logic, the operation \�" as the application

of terms. In general an LP -formula t : F can be read as a combinatory term t of the type

F . Typed combinatory logic CL

!

thus corresponds to a fragment of LP consisting only of

formulas of the sort t : F where t contains no operations other than \�" and F is a formula

built from the propositional letters by \!" only.

There is no restriction on the choice of a constant c in R2 within a given derivation. In

particular, R2 allows to introduce a formula c :A(c), or to specify a constant several times

as a proof of di�erent axioms from A0 { A4. One might restrict LP to injective constant

speci�cations, i.e. only allowing each constant to serve as a proof of a single axiom A within a
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given derivation (although allowing constructions c :A(c), as before). Such a restriction would

not change the ability of LP to emulate classical modal logic, or the functional and arithmetical

completeness theorems for LP (below), though it will provoke an excessive renaming of the

constants.

For a given constant speci�cation CS under LP(CS) we mean LP

0

plus CS. Obviously,

F is derivable in LP with a constant speci�cation CS , LP(CS) ` F , LP

0

`

^

CS ! F:

1.4 Lemma. (Constructive Necessitation)

` F ) ` p :F for some proof polynomial p.

1.5 Comment. The di�erences between deterministic and non-deterministic proof systems

are mostly cosmetic. Usual proof systems (Hilbert or Gentzen style) may be considered as

deterministic, e.g. a proof derives only the end formula (sequent) of a proof tree. On the

other hand, the same systems may be regarded as non-deterministic by assuming that a proof

derives all formulas assigned to the nodes of the proof tree.

2 Standard provability interpretation of LP

First order Peano Arithmetic PA (cf. [7], [8], [24], [33]) is a natural source of proof systems

with G�odel numbers of proofs being a natural instrument of internalizing proofs as terms

(natural numbers). In principle any system of proofs with a proof checker operation capable

of internalizing its own proofs as terms (cf.[32]) can provide a model for LP .

If n is a natural number, then n will denote a numeral corresponding to n, i.e. a standard

arithmetical term 0

000:::

where

0

is a successor functional symbol and the number of

0

's equals

n. We will use the simpli�ed notation n for a numeral n when it is safe.

2.1 De�nition. We assume that PA contains terms for all primitive recursive functions,

called primitive recursive terms. Formulas of the form f(~x) = 0 where f(~x) is a primitive

recursive term are standard primitive recursive formulas. A standard �

1

formula is a formula

9x'(x; ~y) where '(x; ~y) is a standard primitive recursive formula. An arithmetical formula '

is provably �

1

if it is provably equivalent in PA to a standard �

1

formula; ' is provably �

1

i� both ' and :' are provably �

1

.

2.2 De�nition. A proof predicate is a provably �

1

-formula Prf (x; y) such that for every

arithmetical sentence '

PA ` ' , for some n2! Prf (n; p'q) holds

2

:

2

We have omitted bars over numerals for natural numbers n; p'q in the formula Prf.
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A proof predicate Prf(x,y) is normal if the following conditions are ful�lled:

1) (�niteness of proofs) For every proof k the set T (k) = fl j Prf (k; l)g is �nite. The

function from k to the canonical number of T (k) is computable. In particular, this property

indicates that the set of theorems proven by k is �nite for every k.

2) (conjoinability of proofs) For any natural numbers k and l there is a natural number n

such that

T (k)[ T (l) � T (n):

2.3 Lemma. For every normal proof predicate Prf there are computable functions m(x; y),

a(x; y), c(x) such that for all arithmetical formulas ';  and all natural numbers k; n the

following formulas are valid:

Prf (k; p'! q) ^ Prf (n; p'q)!Prf (m(k; n); p q)

Prf (k; p'q)!Prf (a(k; n); p'q); Prf (n; p'q)!Prf (a(k; n); p'q)

Prf (k; p'q)!Prf (c(k); pPrf (k; p'q)q).

Note, that the natural arithmetical proof predicate PROOF(x,y)

\x is the code of a derivation containing a formula with the code y".

is an example of a normal proof predicate.

2.4 De�nition. An arithmetical interpretation � of the LP -language has the following

parameters:

� a normal proof predicate Prf with the functions m(x; y), a(x; y), c(x) as in Lemma 2.4,

� an evaluation of propositional letters by sentences of arithmetic, and

� an evaluation of proof letters and proof constants by natural numbers.

Let � commute with boolean connectives,

(t�s)

�

= m(t

�

; s

�

); (t+ s)

�

= a(t

�

; s

�

); (!t)

�

= c(t

�

);

(t :F )

�

= Prf (t

�

; pF

�

q):

A formula (t :F )

�

is always provably �

1

. Note, that PA (as well as any theory containing

certain �nite number of arithmetical axioms, e.g. Robinson's arithmetic) is able to derive any

true �

1

formula, and thus to derive a negation of any false �

1

formula (cf. [24]). For a set

X of LP -formulas under X

�

we mean the set of all F

�

's such that F 2 X . Given a constant

speci�cation CS, an arithmetical interpretation � is a CS-interpretation if all formulas from

CS

�

are true (equivalently, are provable in PA). An LP -formula F is valid (with respect to
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the arithmetical semantics) if the arithmetical formula F

�

is true under all interpretations �.

F is CS-valid if F

�

is true under all CS-interpretations �.

2.5 Theorem. (Arithmetical completeness of LP

0

)

1. LP

0

` F , F is valid.

2. LP

0

` F , PA ` F

�

for any interpretation �.

2.6 Corollary. (Arithmetical completeness of LP)

LP(CS) ` F , F is CS-valid.

3 Realization of modal and intuitionistic logics

Let F

o

be the result of substituting 2X for all occurrences of t :X in F , and �

o

= fF

o

j F 2 �g

for any set � of LP-formulas.

3.1 Lemma. If LP ` F , then S4 ` F

o

.

Proof. This is a straightforward induction on a derivation in LP .

J

The goal of the current section is to establish the converse, namely that LP su�ces to

realize any S4 theorem. By an LP-realization of a modal formula F we mean an assignment

of proof polynomials to all occurrences of the modality in F , Let F

r

be the image of F under

a realization r. Positive and negative occurrences of modality in a formula and a sequent are

de�ned in the usual way.

A realization r is normal if all negative occurrences of 2 are realized by proof variables.

3.2 Theorem. If S4 ` F , then LP ` F

r

for some normal realization r.

3.3 Corollary. (Arithmetical completeness of S4.) S4 ` F i� there is a realization r and

a constant speci�cation CS such that F

r

is CS-valid.

3.4 Comment. It follows from 3.1 and 3.2 that S4 is nothing but a lazy version of LP

when we don't keep track on the proof polynomials assigned to the occurrences of 2. Each

theorem of S4 admits a decoding via LP as a statement about speci�c proofs.
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Let k(F ) denote a translation of an intuitionistic formula F into the plain modal language

which puts the pre�x 2 in front of all atoms and implications in F . It is well-known that

Int ` F i� S4 ` k(F ) (see, for example, [10]).

3.5 Corollary. (Realization of intuitionistic logic) For any Int-formula F

Int ` F , LP ` (k(F ))

r

for some realization r:

3.6 Corollary. (Arithmetical completeness of Int.) Int ` F i� there is a realization r

and constant speci�cation CS such that k(F )

r

CS-valid.

Kolmogorov's interpretation of intuitionistic logic Int as a \calculus of problems" ([16]) can

be made explicit via LP .

3.7 De�nition. Let F be a formula in the intuitionistic propositional language. A formula

F is Kolmogorov realizable if LP ` [k(F )]

r

for some realization r of modalities in k(F ) by

proof polynomials. Kolmogorov logic (K) is the set of all Kolmogorov realizable propositional

formulas. Note that the Kolmogorov relizability may be regarded as a direct formalization of

the Kolmogorov calculus of problems from [16] under reading \problem solutions" as \proofs".

3.8 Theorem. (Completeness of Int with respect to the Kolmogorov realization)

Int = K:
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