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been supplied with an informal Brouwer-Heyting-Kolmogorov operational seman-tics in [6], [8], cf.[10]. However, both S4 and Int have lacked exact descriptionsof their intended semantics. The straightforward interpretation of 2F as\F is provable in Peano Arithmetic"leads to logics of formal provability incompatible with S4. Also, Kleene realiz-ability is known to capture more, than Int is able to derive. It turns out thatthese questions can be resolved on the basis of operational reformulation of modallogic with realization of functions that appear as operations on proofs.Nothing is wrong with the Provability Logic, as far as provability in PeanoArithmetic PA is concerned. However, traditional Provability Logic fails to pro-vide an adequate model for the informal notion of provability. The arithmeticalformula Provable(pFq), i.e.\there exists a proof x of F"is weaker than the intended \F is provable", since x may be nonstandard. HenceProvable(pFq)! Fis stronger, than the intended\if F is provable, then F is true "As a result the formula Provable(pFq)! F is not provable in arithmetic and thereexivity formula 2F ! Fis not derivable in Provability Logic.To deal with this phenomenon one has to incorporate into modal languagea machinery to keep all proofs \real". Getting rid of quanti�ers over proofs, wehave to use Skolem type functions instead. Where should these functions comefrom?The proof of the Second G�odel incompleteness theorem tells much more aboutprovability properties than the plain modal language is able to express. Modalprovability formulas forget some essential information: for example in the prov-ability context the usual distributivity formula2(F ! G)! (2F ! 2G)is a modal version of\there is a recursive operation m which for a given proof x of F ! Gand a given proof y of F produces a proof m(x; y) of G."2



A similar decoding can be done for the transitivity modal formula2F ! 22F :\there is a recursive operation c which for a given proof x of F returnsa proof c(x) of \x is a proof of F" ".We show that an additional operation on proofs is needed to provide a com-plete basis for the entire class of operations over proofs which can be speci�edin arithmetic by propositional conditions. Three basic operations on proofs canbe naturally interpreted as Brouwer - Heyting - Kolmogorov realizing operations;Int and S4 are proved to be complete with respect to this sort of realizability.We introduce the Logic of Proofs LP and show thatS4 ` F , there is a realization r of F by proof terms such that LP ` F rand LP ` G , G�is true for every proof interpretation � :In a certain sense, the logic of proofs is good old S4, but presented in more richoperational language. This split of classical modalities into a �nitely generatedset of operations handles proper realizability and provability. It is expected to beuseful in other applications of modal and provability logics as well.We will not distinguish between a �1-predicate and the arithmetical formulathat represents it in Peano Arithmetic PA. We also assume that the system ofarithmetical terms includes so called �-terms (cf. [7],[3]). So, for any arithmeticalformula '(~x; y) such that PA ` 8~x9!y'(~x; y), there exists a term �y'(~x; y) suchthat PA ` 8~x'(~x; �y'(~x; y)). In particular, we assume that there are arithmeticalterms for all provably total recursive functions. Closed recursive term is a �-term�z'(z) where formula '(z) contain no variables other than z. For any arithmeticalformula ' by �z' we understand �-term determined by the formula'(z) ^ 8v < z:'(v);while �z' # means 9z('(z) ^ 8v < z:'(v)):According to the rules for �-terms for any arithmetical formula A(x)A(�z'(z)) = 9z['(z) ^ 8w < z:'(w) ^A(z)]:Note, that if A is provably �1-formula and �z'(z) is a closed recursive term,then A(�z'(z)) is again a provably �1-formula.Also let Proof (x; y) stand for the usual G�odel proof predicate\x is a derivation code of a formula with a code y".3



2 Logic of operations on proofsThe language of LP contains� boolean constants >;?, sentence letters S1; : : : ; Sn; : : :� proof letters p1; : : : ; pn; : : :� proof axiom constants a1; : : : ; an; : : :� boolean connectives !; : : :� functional symbols: monadic !, binary + and �� operator symbol [[ ]] ( ).The sets Tm of terms and Fm of formulas are de�ned in a natural way.Any proof letter and axiom constant is in Tm; any sentence letter or booleanconstant is in Fm; whenever s; t 2 Tm we have !t; (s + t); (s � t) 2 Tm; booleanconnectives behave conventionally, and if F 2 Fm and t 2 Tm, then [[t]] F 2Fm. We will write s � t or even st instead of (s � t) and skip parentheses whenconvenient. Formulas [[t]] F are called quasiatomic formulas (q-atomic, for short).Without loss of generality we restrict ourselves to a �nite fragment of the LP-language, assuming that sets of sentence and proof letters, along with a set ofaxiom constants, have cardinality � n for some unspeci�ed natural number n.2.1 De�nition. System LP. The axioms are all formulas of the formA0. Tautologies in the language of LPA1. [[t]] F ! FA2. [[t]](F ! G) ! ([[s]] F ! [[ts]] G)A3. [[t]] F ! [[!t]][[t]] FA4. [[s]] F _ [[t]] F ! [[s+ t]] FA5. [[c]]A, where c is an axiom constant, and A is an axiom A0 - A4.Rule: modus ponens.2.2 Comment. The intended understanding of LP is as a logic of operationson proofs, where [[t]]F stands for\t is a code for a proof of F":For the usual G�odel proof predicate Proof (x; y) in PA there are primitive recursivefunctions from codes of proofs to codes of proofs which correspond to \�" and4



\!". So, \�" corresponds to a concatenation of proof sequences which realizesthe modus ponens rule in arithmetic, and \!" is represented by a special case of aG�odel function appearing in the proof of �1-completeness of arithmetic (cf. [11]).The usual proof predicate has a natural nondeterministic version PROOF (x; y)called standard nondeterministic proof predicate\x is a code of a derivation containing a formula with a code y".PROOF already has all three operations of the LP-language:� u 
 v is the code of the concatenation of u, v and a �nite sequence of allformulas Y such that X ! Y 2 u, X 2 v� u� v is just the concatenation of proof codes u and v� *u for a given u calculates the �rst code of a proof which containsPROOF (u; p'1q); : : : ;PROOF (u; p'kq)for all '1; : : : ; 'k from a proof with the code u.There exist natural extensions of the operations 
; � from numbers to �-termsin such a way, that for any f = �zF (z), g = �uG(u) and for any formulas ',  PA ` PROOF (f; p'!  q) ^ PROOF (g; p'q)! PROOF (f 
 g; p q)PA ` PROOF (f; p'q) _ PROOF (g; p'q)! PROOF (f � g; p'q).The operation * now consumes the G�odel number of a closed recursive term�zF (z) , and produces the �rst nondeterministic proof *(p�zF (z)q) of all trueformulas PROOF (f; p'q) (a �nite set). Since PROOF (f; p'q) is a provably �1-condition, thenPA ` PROOF (f; p'q)! PROOF (*(pfq); pPROOF (f; p'q)q).2.3 De�nition. A proof predicate is a provably �1-formula Prf (x; y) such thatfor all ' PA ` ' , for some n 2 ! Prf (n; p'q) holds:For any proof predicate Prf (x; y) under Pr(y) we understand the correspondingprovability predicate: Pr(y) is 9xPrf (x; y).2.4 De�nition. A proof predicate is normal if5



1. for every proof the set of corresponding theorems is �nite and the functionT (k) = the code of the set fl j Prf (k; l)gis total recursive.2. Prf is supplied with provably total recursive functions m(x; y); e(x; y)such that for all arithmetical formulas '; PA ` 8x; y[Prf (x; p'!  q)! (Prf (y; p'q)! Prf (m(x; y); p q)]PA ` 8x; y[Prf (x; p'q) _ Prf (y; p'q)! Prf (e(x; y); p'q)].Note, that PROOF is a normal proof predicate with m(x; y) = x
 y; e(x; y) =x� y.2.5 Lemma. For any nomal proof predicate Prf there is a provably recursivefunction c(x) such that for any closed recursive term fPA ` Prf (f; p'q)! Prf (c(pfq); pPrf (f; p'q)q)Proof. The function c on an input k 2 ! works as follows: c recovers the term fsuch that k = pfq and calculates T (f). Then for every ' from T (f) it computesl = l' such that Prf (l; pPrf (f; p'q)q); such l exists by the �1-completenessproperty of arithmetic, since Prf (f; p'q) is a recursive formula. Finally, c(k) isequal the e-sum of l''s for all ''s from T (f).JFrom now on we assume that a normal proof predicate is supplied also with afunction c(x), satisfying the conclusion of the previous lemma.Remark. Obviously for any proof predicate Prf with the \summation" functione(x; y) and any provable formula ' the setP (') = fn 2 ! j Prf (n; p'q)gis in�nite recursive. Suppose P (') is �nite and considerP 0 = fe(n; l) j n 2 P ('); and 9 Prf (l; p q)g:By the normality property of the function e every theorem has a proof from P 0.By the assumption about P however P 0 � P , i.e. P 0 is �nite, which gives a cleardecision procedure for PA. 6



2.6 De�nition. Axiom speci�cation (AS) is a �nite subset of A5. For anyaxiom speci�cation AS by LPAS we understand LP with AS instead of A5.Axiom speci�cation AS is well-founded if for the following binary relation onaxiom constantsa1 � a2 , there exists a term t containing a2 such that[[a1]]([[t]]F ! F ) 2 AS or [[a1]]([[t]]F ! [[!t]][[t]]F ) 2 AS,any chain a1 � a2 � a3 � : : : is �nite.2.7 De�nition. An arithmetical AS-interpretation � of LP-language has thefollowing parameters:1. an axiom speci�cation AS2. a normal proof predicate Prf3. an evaluation of sentence letters by sentences of arithmetic, an evaluationof proof letters and axiom constants by closed provably recursive terms.We assume that >� = (0 = 0) and ?� = (0 = 1), � commute with booleanconnectives, (t � s)� = m(t�; s�); (t+ s)� = e(t�; s�); (!t)� = c(pt�q),([[t]]F )� is Prf (t�; pF �q);and PA ` G� for all G 2 AS:2.8 Lemma. If an axiom speci�cation AS is well-founded, then for any normalproof predicate Prf any evaluation � of proof letters can be extended to an AS-interpretation based on Prf.Proof. Consider the following evaluation of constants: those a's which do notoccur among c1; : : : ; ck in AS are evaluated by arbitrary natural numbers. Sortthe remaining c1; : : : ; ck in an order respecting the relation �; without loss ofgenerality we assume that ci � cj ) i > j. Constants c1; : : : ; ck are evalu-ated according to a multiple arithmetical �xed point construction: there existarithmetical formulas '1; : : : ; 'k such that'i(z) $ z = �w[Prf (w; pBi;1�q) ^ : : : ^ Prf (w; pBi;ki�q)];where [[ci]]Bi;1; : : : ; [[ci]]Bi;ki is the total list of formulas from AS which correspondto ci and � is extended to c1; : : : ; ck byci� = �z'i(z):7



We claim that PA ` �z'i(z)# and PA ` ([[ci]]Bi;j)� for all i = 1; : : : ; k, j =1; : : : ; ki.By induction on i. Basis, i.e. i = 1. Then AS is f[[c1]]B1;1; : : : ; [[c1]]B1;k1g.We claim that PA ` B1;j� for all j = 1; : : : ; k1. Consider the cases.A0. Here B1;j, therefore B1;j� are tautologies, and PA ` B1;j�.A1. B1;j is [[t]]F ! F . By the well-foundness of AS t contains none ofci for i = 1; : : : ; k, thus t� is a closed recursive term. Let n be the value oft�. If Prf (n; pF �q) is true, then PA ` F �, thus PA ` Prf (n; pF �q) ! F �. IfPrf (n; pF �q) is false, then PA ` :Prf (n; pF �q), and again PA ` Prf (n; pF �q)!F �.Cases A2 and A4 follow easily from the normality condition 2 by arguing inPA.A3. B1;j is [[t]]F ! [[!t]][[t]]F . Here again, by the well-foundness of AS termt does not contain c1; : : : ; ck , thus t� is a closed recursive term and we are doneby 2.5.Now since PA ` B1;j� there exists nj 2 ! such that Prf (nj ; pB1;j�q), thusPA ` Prf (nj; pB1;j�q) for all j = 1; : : : ; k1. Put N to be the \sum" in sense ofthe function e(x; y) of n1; : : : ; nk1 . ClearlyPA ` Prf (N; pB1;1�q) ^ : : : ^ Prf (N; pB1;k1�q):Let M be the least natural number such thatPA ` Prf (M; pB1;1�q) ^ : : : ^ Prf (M; pB1;k1�q):Then PA `M = �z'1(z), since Prf is provably recursive, and PA ` ([[c1]]B1;j)�for all j = 1; : : : ; k1.The induction step is similar to the basis. In the cases A1 and A3 by thewell-foundness of AS term t does not contain constants cj with j > i, and thust� is again a closed recursive term.J2.9 Comment. We might restrict ourselves to well-founded AS only and stickto a particular procedure of recovering an evaluation of axiom constants fromgiven AS, Prf and evaluations of sentence and proof letters, say as in lemma 2.8.This approach works as well; the completeness proof there may be obtained by aslight modi�cation of the arithmetical �xed point construction from Section 6.8



2.10 Theorem. If LPAS ` F , then PA ` F � under any AS-interpretation �.Proof. By induction on the length of derivations in LP . Axioms A2, A4 arecorrect by the de�nition of a natural proof predicate. A0, A1 and A3 have justbeen checked within the proof of lemma 2.8. AS is correct by the de�nition ofan AS-interpretation.J2.11 Lemma. (Constructive necessitation)LP ` F ) for some term t of axiom constants LP ` [[t]]F:Proof. By induction on a proof of F in LP. If F is an axiom A0 { A4, thentake [[c]]F from A5 with a fresh axiom constant c. If F is A5, then use A3. LetF be obtained from E ! F and E by modus ponens. Then, by the inductionhypothesis, LP ` [[t]]E and LP ` [[s]](E ! F ) for some terms s and t. By A2,LP ` [[st]] F .J2.12 Corollary. LP ` F ! G ) 8s 9t LP ` [[s]]F ! [[t]]G:Indeed, if LP ` F ! G, then, by the constructive necessitation, for someterm u we have LP ` [[u]](F ! G). By A2,LP ` [[u]](F ! G) ! ([[s]] F ! [[us]] G)and thus LP ` [[s]]F ! [[us]]G.2.13 Lemma. 8s; t 8F;G 9u LP ` [[s]]F ^ [[t]]G! [[u]](F ^G):Proof. Pick an A5 axiom [[c]](F ! (G ! F ^G)) with a fresh axiom constantc. By A2LP ` [[c]](F ! (G! F ^G))! ([[s]] F ! [[cs]](G! F ^G)):9



Then LP ` [[s]]F ! [[cs]](G! F ^G):Similarly, LP ` [[cs]](G! F ^G)! ([[t]]G! [[(cs)t]](F ^G));and we are done with u = (cs)t.J2.14 De�nition. By a positive �-formula we understand a f^;_g combinationof q-atomic formulas.2.15 Lemma. (Lifting) If D is a f^;_g combination of [[t1]]Q1; : : : ; [[tk]]Qk, thenfore some term s LP ` D ! [[s]]D:Proof. By induction on the length of formula D. The case D is q-atomic iscovered by A3. Let now D be F ^G. By the induction hypothesis, for some termss; t LPAS proves both F ! [[s]]F and G ! [[t]]G. By lemma 2.13 there exists usuch that LP ` [[s]]F ^ [[t]]G! [[u]](F ^G).Let D be F _ G. By the induction hypothesis, for some terms s; t LP `(F _G)! ([[s]]F _ [[t]]G). By lemma 2.12 there are u; v such thatLP ` [[s]]F ! [[u]](F _G) and LP ` [[t]]G! [[v]](F _G):By A4, and according to the propositional logicLP ` [[s]]F _ [[t]]G ! [[u]](F _G) _ [[v]](F _G) ! [[u+ v]](F _G):J2.16 De�nition. A derivation D in some LPAS is plain if1. in all A1 axioms [[t]]F ! F and all AS axioms [[c]]([[t]]F ! F ) from Dterm t is a proof letter.2. in all A3 axioms [[t]]F ! [[!t]][[t]]F and AS axioms [[c]]([[t]]F ! [[!t]][[t]]F )term t is either a proof letter or an axiom constant.10



For two plain derivations D and D0 we say that D0 is a fresh extension of D(notation D0 w D) if D0 is an extension of D and every new AS axiom [[c]]Bcomes to D0 with a fresh constant c.By \D : F", where D is a derivation and F is a formula we understand \Dcontains F".2.17 Lemma. Let D; D0 be plain derivations, F a formula and t an LP-term.a) If D : F then there exist a term t of axiom constants only and D0 w D suchthat D0 : [[t]]F ,b) If D : F ! G then for any term s there exist a term t of axiom constantsand s only and D0 w D such that D0 : [[s]]F ! [[t]]G,c) if F is a f^;_g combination of [[q1]]Q1; : : : ; [[qk]]Qk, where qi are proofletters, then 8D9D0 w D9t D : F ! [[t]]F:Proof is obtain by a straightforward inspection of the proofs of 2.11, 2.12 and2.15.J2.18 Corollary. Under the conditions of lemma 2.15 there exists a well-foundedaxiom speci�cation AS such that LPAS ` D ! [[s]]D.3 Functional completenessNow we establish a remarkable closure property of the basis �;+; !. We provethat the logic of proofs describes all possible propositional operations on proofs.The basic operations �; !;+ thus play for proofs a role similar to that booleanconnectives play for classical logic.Consider an arbitrary scheme of an operation of proofs speci�cation in arith-metic: j= 8~x 2 C 9y \y is a proof of G(~x)":(here j= means \true in the standard model of arithmetic") or, equivalently,j= 8~x(C(~x) ! 9y \y is a proof of G(~x)"):11



If C and G are arbitrary arithmetical conditions, one should expect hyperarith-metical operations on proofs to appear. However, if we restrict C and G by apropositional language, although already capable of expressing the proof { theo-rem relation, every operation on proofs reduces to superposition of �; !;+.3.1 De�nition. The speci�cation language L([[�]]) is the operation-free frag-ment of LP-language, i.e. proof variables are the only proof terms in L([[�]]).3.2 De�nition. A interpretation � of L([[�]]) is de�ned as a interpretation ofLP-language (omitting clauses for functional symbols and axiom constants).Now we can make C(~x) and G(~x) occurring in8~x(C(~x) ! 9y \y is a proof of G(~x)"):conditions in a propositional speci�cation language L([[�]]). Also, we express theexistential quanti�er 9y \y is a proof of G(~x)" by the usual provability modality2, extending the de�nition of F � by one more item: (2F )� is Pr(pF �q).Finally we restrict C to a \proof positive" condition, i.e. one where the out-ermost q-atomic subformulas are positive in C.Indeed, a condition of the sort:[[x]] P ! 2:[[x]]P;although valid for any proof predicate, may hardly be accepted asan operation on proofs equally as good as �; !;+, because it derivesconclusions from negative information about proofs; here, from \x ISNOT a proof".It seems that now we have found a balanced de�nition of an operation onproofs. The regular case [[x1]]C1 ^ : : : ^ [[xn]]Cn ! G;which comes from the straightforward formalization of the notion of an admissibleinference rule C1; : : : ; CnGis covered. Further shrinking of C to say conjunctions of q-atomic formulas wouldeliminate natural and useful nondeterministic proof predicates.12



3.3 De�nition. We may de�ne now an abstract propositional operation onproofs as a formula C ! 2G;valid under all arithmetical interpretations, where C;G are formulas in the spec-i�cation language L([[�]]) and C is proof positive.3.4 Lemma. LP operations �; !;+ can be identi�ed as abstract propositionaloperations on proofs.Proof. Formulas[[x1]](F ! G) ^ [[x2]] F ! 2 G[[x]]F ! 2[[x]] F[[x1]]F _ [[x2]]F ! 2Fare valid under every arithmetical translation since Skolem functions for the ex-istential quanti�ers on proofs in 2's here can be realized by correspondinglym(x; y); c(x); e(x; y).J The following theorem demonstrates that LP-terms su�ce to realize anypropositional operation on proofs.3.5 Theorem. For any abstract propositional operation on proofsC ! 2Gthere exist an LP-term t and a well-founded axiom speci�cation AS such thatLPAS ` C ! [[t]]G:Proof. The proof is based on paper [2], which gives a complete axiomatizationB0 of all valid formulas in the language L([[�]];2), and on [1] which axiomatizes thearithmetical validity in the language L([[�]]). We consider the following conditions:1. C ! 2G is arithmetically valid2. B0 ` C ! 2G3. LPAS ` C ! [[t]]G for some term t and some well-founded AS.13



(1) ) (2) is the lion share of the job, it follows immediately from the results of[2]. (2)) (3) is the main lemma of the current section. It is proved below usingKripke models for B0, the arithmetical completeness theorem from [1] and somelemmas from the previous sections.Now we list some results from [1], [2] we need here.We recall the logic B0 in the language L([[�]];2). The axioms of B are booleantautologies, 2(A ! B) ! (2A ! 2B), 2(2A ! A) ! 2A, 2pA ! A, 2pA !22pA and :2pA ! 2(:2pA), where p is a proof variable, and A and B areformulas. Rules of B: modus ponens, F ` 2F , 2F ` F . The system B0 has asaxioms all theorem of B and all formulas 2A! A, and modus ponens as its solededuction rule.System P is the 2-free fragment of B0 (or, equivalently, B), and can be ax-iomatized by 2-free axioms and rules of B (cf.[1]). It is easy to see that P is an(operation-free) fragment of LP.The Kripke models for B0 are �nite irreexive tree-like orderings, the forcingrelation j= is de�ned in the usual way for booleans and 2, and1. 8x 2 K x j= 2pA or 8x 2 K x j= :2pA for every q-atomic formula 2pA(stability)2. x j= 2pA ) x j= A for every q-atomic formula 2pA(q-reexivity)Let H(F ) = Vf2B ! B j 2B is a subformula of Fg. We call a model F -soundif its root forces H(F ). For any L([[�]];2)-formula FB0 ` F , F holds at the root node of every F -sound model.Models for P are just singleton B0 models.Let C ! 2G be arithmetically valid.3.6 Lemma. B0 ` C ! 2G.Proof. This is a corollary of the arithmetical completeness theorem for B0 from[2].J3.7 Lemma. LPAS ` C ! G with empty AS .Proof. Since B0 ` C ! 2G, we have B0 ` C ! G. Formula C ! G is 2-free,thus P ` C ! G and LPAS ` C ! G with AS being empty.14



J3.8 Corollary. If C;G are formulas in the language L([[�]]) and C is a positive�-formula, then there exists an LP-term t and a well-founded axiom speci�cationAS such that LPAS ` C ! [[t]]G.Proof. By 3.7 LP ` C ! G with the empty axiom speci�cation. By 2.17(c)there is AS there is such that LPAS ` C ! [[u]]G for some term u. By 2.17(b)for some new AS there exists t such that LPAS ` [[u]]C ! [[t]]G, thus LPAS `C ! [[t]]G.J3.9 Lemma. If B0 ` C ! 2G, then there exists a �-formula Q such thatB0 ` C ! Q and B0 ` Q! 2G:Proof. The set of P-models of the variables from C is �nite; pick those, whereC is true, say a1; : : : ; an. Let ]1; : : : ; ]n be truth assignments of atomic andq-atomic subformulas of C in a1; : : : ; an correspondingly. For any atomic andq-atomic subformula F of C and every ] 2 f]1; : : : ; ]ng we de�neF ] = � F; if ] is true on F:F; if ] is false on F .For i = 1; : : : ; n, letCi = ^fF ]i j F is an atomic or q-atomic subformula of Cg:Then P ` C $ (C1 _ : : : _ Cn). Indeed, if not, then C $ (C1 _ : : : _ Cn) shouldbe false in some model a of P . If C is true in a, then a = ai for some i = 1; : : : ; n,and Ci is true in a. If C it false in a, then all Ci's are also false in a, since P-modelis totally determined by truth assignments of atomic and q-atomic subformulas.Let C�i be the q-part of Ci, i.e.C�i = ^fF ]i j F is a q-atomic subformula of Cg;and let Q = C�1 _ : : :_C�n . Note, that Q is a positive �-formula, since C is proofpositive. P ` C ! Q is easy, since P ` Ci ! C�i , i = 1; : : : ; n. So we haveB0 ` C ! Q. 15



Suppose B0 6` Q! 2G: Then for some model K of B0, Q is forced at the rootnode a of K, but :G is forced at some node b above a. In this situation thereexist i = 1; : : : ; n such that a  C�i . Consider a new model K 0 with the frameai � b, and truth assignments at ai as in the P-model ai, and in b accordingto the model K. We claim that K 0 is a B0-countermodel for C ! 2G, whichis impossible according to the conditions of the lemma. Indeed, b 6 G, thusai 6 2G and ai  2G ! G. Also, ai  C by the choice of ai. The conditionof q-reexivity is ful�lled at ai and b since they are both nodes of legitimate B0-models. The stability condition is also satis�ed, since it holds for a pair a; b in Kand truth assignments of q-atomic subformulas of C at ai and a coincide.J This completes the proof of the theorem 3.5.J4 Realization of modal logicLet F o be the result of substituting 2 for all occurrences of [[t]] in F , and Xo =fF o j F 2 Xg for any set X of LP-formulas.4.1 Lemma. (LP)o � S4.Proof. This is a straightforward induction on a derivation in LP .J The goal of the current section is to establish the converse, namely LP su�cesfor realization of any S4 theorem. By an LP-realization r = r(AS) of a modalformula F we mean1. an assignment of LP-terms to all occurrences of the modality in F ,2. a choice of an axiom speci�cation AS;F r is the image of F under a realization r. A realization r is normal if all negativeoccurrences of 2 are realized by proof letters.4.2 Theorem. If S4 ` F , then LPAS ` F r for some well-founded axiom speci-�cation AS and some normal realization r = r(AS).Proof. Consider a cut-free sequential formulation of S4, with sequents � ) �,where � and � are multisets of modal formulas. Axioms are sequents of the form16



S ) S, where S is a sentence letter. Along with usual structural rules and rulesintroducing boolean connectives there are two proper modal rulesA;� ) � (2 ) )2A;� ) � and 2� ) A ( ) 2)2� ) 2A(A is a formula, �;� - multisets of formulas, 2fA1; : : : ; Ang = f2A1; : : : ;2Ang).If S4 ` F , then there exists a cut-free derivation T of a sequent ) F . Itsu�ces now to construct a normal realization r and a plain LP-derivation Dwhich contains all LP-formulas LP� ` V�r ! W�r for any sequent � ) � inT . We write � instead of V� and � for W� whenever unambiguous.Positive and negative occurrences of modality in a formula and a sequent arede�ned in the usual way.1. An indicated occurrence of 2 in 2F is positive.2. A corresponding occurrence of 2 in F and G! F , G^F , G_F , 2F and(� ) �; F ) has the same polarity.3. A corresponding occurrence of 2 in F and :F , F ! G and (F;� ) �)has opposite polarities.Note that in a cut-free derivation T , the rules respect polarities, all occurrences of2 introduced by ( ) 2) are positive, and all negative occurrences are introducedby (2 ) ) or by weakening.Occurrences of 2 are related if they occur in related formulas of premises andconclusions of rules; we extend this relationship by transitivity. The followingexample demonstrates how related boxes (painted black) proliferate through acontraction rule:4.3 Example.X(2Y );X(�Y );� ) �X(2Y );� ) � ; X(2Y );X(�Y );� ) �X(�Y );� ) �; X(�Y );X(�Y );� ) �X(�Y );� ) � :All positive occurrences of 2 in T are naturally split into disjoint families ofrelated ones; we call a family essential if it contains at least one case of ( ) 2)rule. 17



Now the desired r will be constructed by stages A { C. We reserve a largeenough set of proof letters as new term variables; so there are proof letters, axiomconstants and term variables at our disposal as term generators. Eventually wewill get rid of the term variables in the �nal realization r and in the correspondingproof of F r in LPAS .Stage A. Every negative family and nonessential positive family is realized bya fresh proof letter.Stage B. Pick an essential family f , enumerate all the occurrences of rules( ) 2), which introduce boxes of this family and let nf be the total number ofsuch rules for the family f . Realize all boxes of the family f by the term(x1 + : : : + xnf );where xi's are fresh term variables.Stage C. Proceed with the following process of- assigning to a sequent � ) � an LP-term t (containing no term variables)and upgrading a plain derivation D in order to reachD : [[t]](�! �);- possibly substituting some LP-term s for a term variable,- moving downwards.We start from the axiom nodes. Assign a fresh axiom constant a to each axiomS ) S. Clearly [[a]](S ! S) is a proof of itself.Weakening rule: � ) �Y;� ) � :Let term t be assigned to � ) �. Pick a fresh axiom constant b, add[[b]]((�! �)! (Y ^ �! �))to D. Then, by A2 �nd a new D such thatD : [[bt]](Y ^ �! �):Weakening rule (succedent) is treated similarly.Contraction rule: Y; Y;� ) �Y;� ) � :18



Let term t be assigned to Y; Y;� ) �. Pick a fresh axiom constant b, add[[b]]((Y ^ Y ^ �! �)! (Y ^ �! �))to D. Then, by A2 �nd a new D such thatD : [[bt]](Y ^ �! �):Similar treatment should be given to all remaining structural rules and rulesintroducing boolean connectives.Rule (2 ) ) has already looked like:X;� ) �[[p]]X;� ) �for some proof letter p. Let term t be assigned to the premise X;� ) �. ExtendD by [[b]]([[p]]X ! X) for a fresh axiom constant b. Since D : [[t]](X ^ �! �), itis now an easy exercise to construct t0 and D0 w D such thatD0 : [[t0]](X ! (�! �));then s(t0; b) and D00 w D0 such thatD00 : [[s(t0; b)]]([[p]]X ! (�! �));and �nally s0(t0; b), D000 w D00 such thatD000 : [[s0(t0; b)]]([[p]]X ^ �! �):Let an occurrence of the rule ( ) 2) have number i in the numbering of allrules ( ) 2) from a given family f . This rule already has a form[[q1]]Y1; : : : ; [[qk]]Yk ) Y[[q1]]Y1; : : : ; [[qk]]Yk ) [[u1 + : : : + unf ]]Y ;where q1; : : : ; qk are proof letters, u1; : : : ; unf are LP-terms, and ui is a termvariable; assume the latter condition to be built-in an inductive hypothesis. Letterm t be assigned to [[q1]]Y1; : : : ; [[qk]]Yk ) Y , i.e.D : [[t]]([[q1]]Y1 ^ : : : ^ [[qk]]Yk ! Y ):By the lemma 2.17(c), there exists an LP-term s of axiom constants and proofletters q1; : : : ; qk and D0 w D such thatD0 : [[q1]]Y1 ^ : : : ^ [[qk]]Yk ! [[s]]([[q1]]Y1 ^ : : : ^ [[qk]]Yk):19



By A2 we get D00 w D0 such thatD00 : [[s]]([[q1]]Y1 ^ : : : ^ [[qk]]Yk)! [[ts]]Y:By A4 we construct D000 w D00D000 : [[ts]]Y ! [[u1 + : : :+ ui�1 + ts+ ui+1 + : : : + unf ]]Y:Finally, D000 has a straightforward fresh extension D0000 such thatD0000 : k̂i=1 [[qi]]Yi ! [[u1 + : : : + ui�1 + ts+ ui+1 + : : :+ unf ]]Y:By the lemma 2.17(a) there exist an LP-term b of axiom constants only andD00000 w D0000 such thatD00000 : [[b]]( k̂i=1 [[qi]]Yi ! [[u1 + : : :+ ui�1 + ts+ ui+1 + : : : + unf ]]Y ):Finally, we substitute term ts for variable ui everywhere in T and in D ; thisremains possible since ts does not contain term variables. Also, D remains aplain derivation since this substitution does not e�ect proof letters and axiomconstants.By the end of stage C all the term variables are replaced by LP-terms of proofletters and axiom constants, which determines the desired normal realization r.By the construction the LP-proof D contains F r.J Combining 4.1 and 4.2 we get4.4 Corollary. S4 ` F , LP ` F r for some realization r:4.5 Comment. The realization algorithm above produces a normal realization.G�odel in [4] de�ned a translation tr of an intuitionistic formula, into an S4-formulawhere tr(F) is obtained from F by pre�xing every subformula of the latter by 2.This G�odel translation is shown ([4], [9]) to provide an exact embedding of Intinto S4: for any Int-formula FInt ` F , S4 ` tr(F ):20



The Brouwer - Heyting - Kolmogorov operations via Godel embedding of Int intoS4 may now be regarded as LP-terms under normal realization of S4. The proofinterpretation of LP-terms makes this de�tinition precise. Note, that by 4.2 theproof constructed for F r in LP also produces a well-founded axiom speci�cationAS for F r.4.6 Corollary. For any Int-formula FInt ` F , LP ` (tr(F ))r for some realization r:By 2.10 and 4.2 we have4.7 Theorem. (Arithmetical correctness of S4)S4 ` F ) there exist a (well-founded) axiom speci�cation ASand a (normal) realization r(AS) of F such thatPA ` (F r)�for any AS-interpretation �.5 Canonical model5.1 De�nition. The saturation algorithm A starts from a LP-formula F andan axiom speci�cation AS such thatLPAS 6` F;and produces a pair of sets (�;�) of LP-formulas by cycles of transformations 1-6below. Each step 1 { 6, before performing \goto" command, does the followingtest: \If �\� 6= ;, then backtrack to the nearest branching point and if no pathsremain unexplored, then terminate with failure. If no transformations 1 { 6 canbe applied, terminate with success".0. Put �0 = f?; Fg and �0 = f>g [ f[[c]]A j [[c]]A 2 ASg, goto 1.1. For every formula X ! Y 2 � which has not been discharged by the rule 1before nondeterministically put Y into �, if Y 62 � or put X into �, if X 62 �, anddischarge the formula X ! Y 2 �. This is a branching point, and A backtracks(if any) to one of these points. If a backtracking happens, then all the dischargesoccured during the backtracked period are canceled. Goto 2.21



2. For all formulas X ! Y 2 � put X into �, unless X 2 �, and put Y into�, unless Y 2 �, goto 3.3. For all [[t]]X 2 � such that X 62 � put X into �, goto 4.4. For all pairs [[s]]X 2 �, [[t]](X ! Y ) 2 �, put [[ts]]Y into �, if it has notbeen there before, goto 5.5. For all [[t]]X 2 � put [[!t]][[t]]X into �, if it has not been there before, goto6. 6. For all [[t]]X 2 � and all s occurring in the current pair (�;�) put both[[t+ s]]X and [[s+ t]]X into �, if they have not been there before, goto 1.It is clear, that saturation algorithm either terminates with failure or termi-nates with success or runs forever.5.2 Lemma. If A terminates with failure, then LPAS ` F .Proof. This is a fairly standard lemma. Consider a �nite tree T of a failedsaturation process. Every node of T is a pair (�;�) of �nite sets of LP-formulas.By an easy induction on the depth of a node in T we can prove that LPAS ` �!�. Thus LPAS ` F .J Without loss of generality we may assume that A runs forever.Let jtj denote the length of t. Let also Sb denote the set of all subformulasof (�0;�0), and let N be maximum of the cardinality of Sb and the lengths ofterms, occurring in Sb. Lete� = fX j [[t]]X 2 � for some tg;and M(�) = e� \ Sb. A cycle is one turn of transformations 1 { 6 in an A run.5.3 Lemma. If none of 1, 2, 3 is active and no backtracking occurs duringconsecutive 2N cycles, then no more activities of 1, 2, 3 or backtrackings willever occur.Proof. Assume the conditions of the lemma. Letmj = minfjtj j [[t]]F is put to � at the cylcle jg:(a) mj+1 > mj. Indeed, consider the cycle j+1 and let [[t]]F appears in � duringthis cycle. Consider three cases: 4, 5 and 6.22



If [[t]]F is introduced by 4, i.e. from [[u]](X ! F ) 2 � and [[v]]X 2 � witht = uv, then at least one of these formulas appeared in � during the j's cycle;otherwise [[t]]F would appeared in � during the cycle j or earlier. Thusjtj = juvj > max(juj; jvj) � mj:If [[t]]F is introduced by 5, i.e. from [[u]]X 2 �, and t =!u; F = [[u]]X, then[[u]]X appeared in � either during the cycle j or by the rule 4 of the cycle j + 1.In both cases jtj = j!uj > juj �mj :Case 6 is similar to 5. Thus (a) is established.Let j denote the number of 4-5-6 cycles which have passed after the beginningof the interval from the conditions of the lemma, and let �j denote the set �immediately after the last rule of the cycle j was performed.(b) If j > N and M(�j) =M(�j+1), then M(�j) =M(�k) for all k > j.Indeed, suppose the opposite and pick the �rst k > j such that M(�j) 6=M(�k). Again, consider the �rst rule of 4, 5, 6, which changesM(�j) at the cyclek. It cannot be 4: from [[s]]X 2 � and [[t]](X ! Y ) 2 � put [[ts]]Y into �, becausefor this rule both X; X ! Y are from Sb, thus X; X ! Y 2M(�j+1) =M(�j),and Y is already in M(�j+1).It cannot be 5: from [[t]]X 2 � put [[!t]][[t]]X into �. Indeed, by (a) jtj > Nand the formula [[t]]X is too long to be in Sb.It cannot be 6 either, since this rule does not change M(�).(c) If j > N and M(�j) = M(�j+1), then no rules 1, 2 or 3 can apply at allafter the cycle j + 1.Indeed, consider the �rst active rule of 1, 2, 3 after the cycle j from theassumption (c), i.e. j > N and M(�j) = M(�j+1). Let it happen during thecycle k > j+1, note that by (b)M(�k) =M(�k�1) =M(�k�2). This rule cannotbe 1, since it applies to new formulas of the form X ! Y , and no such formulasappeared at the cycle k� 1. It cannot be 2 either, since no changes of � happenat the cycle k� 1. Suppose it is 3 that applies at the cycle k to [[t]]F . Then [[t]]Fappeared at the cycle k � 1 by one of the rules 4, 5, 6.If by 4, then F 2 M(�k), thus F 2 M(�k�2) and F 2 �k�1 by the rule 3during the cycle k � 1. So, 3 does not apply to [[t]]F .If by 5, then F = [[s]]X, t =!s, and [[s]]X 2 �k�1. Again, 3 does not apply to[[t]]F .If by 6, then [[t]]F = [[u+ v]]F and one of [[u]]F; [[v]]F is from �k�1. Suppose[[u]]F 2 �k�1. If [[u]]F 2 �k�2, then F 2 �k�1 by the rule 3 at k � 1, and 3 does23



not apply to [[t]]F at k. So, [[u]]F is introduced during the cycle k � 1 by 4 or 5.It cannot be 4, because then F 2M(�k�1) =M(�k�2) and F 2 �k�1. It cannotby 5 either since then again F 2 �k�1. So (c) is established.(d) Since M(�j) is monotone on j and M(�j) � Sb it takes not more then Ncycles after the �rst N ones until we meet M(�j) =M(�j+1). After this momentno further backtracking is possible and A runs forever.J5.4 Lemma. If an interval of an A-run without backtrackings is longer than8N2 cycles, then no more backtrackings can happen during this run.Proof. Suppose the opposite, i.e. that A backtracks after an interval of morethan 8N2 cycles without backtracking. By the previous lemma rules 1, 2, 3 cannotall stay passive during more than 2N consecutive cycles without backtracking.Each of 1, 2, 3 cannot be active more than N times, since their inputs are formulasfrom Sb. That gives us a bound (3N � 1)(2N + 1) + 1 = 6N2 +N < 8N2 afterwhich no more backtrackings can happen.J5.5 Lemma. Each run of A makes not more than 2N backtrackings.Proof. From what we have already learned about A, no formulas X ! Y otherthan from Sb can ever appear in �, not more than N binary choices to breakX ! Y by the rule 1, not more than 2N variants.J Thus, after �nite amount of returns an in�nite computational process will nolonger backtrack; let (�;�) denote the limit of current �'s and �'s correspond-ingly. The following lemma summarizes our knowledge about the saturation pro-cess.5.6 Lemma. (Stabilization lemma) After j cycles with j > N2 � 2N+3 no morebacktrackings can occur, only rules 4, 5, 6 can be active, all newcomings are to �and have a form [[t]]X with a term t having length greater than j �N2 � 2N+3.5.7 Corollary. � is �nite, � is recursive, a set I(t) = fB j [[t]]B 2 �g is �nitefor every term t, a function from t to I(t) is recursive.24



Proof. � is �nite, since � � Sb. To decide whether a k symbols long formulaH is in � it su�ces now to wait i = k+N2 �2N+3 cycles of A and to check H 2 �ifor a �nite set �i. The same argument applies to a function from t to I(t).J5.8 Lemma. If algorithm A on a given formula F succeeds or runs forever, thenLPAS 6` F .The proof is a standard canonical model argument. Complete (�;�) to a maximalconsistent pair of sets, de�ne (�;�) j= Q as Q 2 � for any atomic or q-atomicQ, prove that (�;�) j= H , H 2 � and (�;�) j= LPAS. Conclude, thatLPAS 6` F , since F 2 �. However, we'll get the claim of this lemma for free afterthe arithmetical competeness theorem 6.1 below.5.9 Corollary. LPAS is decidable for any AS.6 Arithmetical completeness6.1 Theorem. For any LP-formula F and any axiom speci�cation ASLPAS 6` F ) F �is false for some AS-interpretation �:Proof. Let LPAS 6` F . Run the saturation algorithm A on F , which bylemma 5.2 either succeeds or does not terminate. Without loss of generality wemay assume the latter, and let �, � denote the limit of current �j 's and �j'scorrespondingly. By 5.7 � is recursive and � is �nite.We de�ne the desired interpretation � on sentence letters Si, proof letters pjand axiom constants aj �rst. PutSi� = � i+ 1 = i+ 1; if Si 2 �i+ 1 = 0; if Si 62 �, pj� = ppjq; aj� = pajq:The remaining parts of � are constructed by a multiple arithmetical �xed pointequation. Let (PROOF, 
; �; !) be a standard nondeterministic proof predicatefrom 2.2. For technical convenience and without loss of generality we assume thatPROOF (ptq; k) is false for any LP-term t and any k 2 !.25



In what follows � is based on Prf as proof predicate,�� = �zM(x; y; z); +� = �zE(x; y; z); !� = �zC(x; z):Note, that pB�q can be calculated in a primitive recursive way frompPrf (x; y)q; pM(x; y; z)q; pC(x; z)q; pE(x; y; z)qfor any subformula B from � [�.By the arithmetical �xed point argument there exist arithmetical formulasPrf (x; y), M(x; y; z), E(x; y; z), C(x; z) such that PA proves the following �xedpoint equation (FPE):Prf (x; y) $ PROOF (x; y) __(\x = ptq for some LP-term t" ^ y = pB�q ^ \[[t]]B 2 �"):M(x; y; z) $ if x = psq and y = ptq for some terms s; t, then z = pstq ,if x = psq and y 6= ptq for any term t, then recover I(s),put z = �w(VfPROOF (w; pB�q) j B 2 I(s)g)
 y,if y = ptq and x 6= psq for any term s, then recover I(t),put z = x
 �w(VfPROOF (w; pB�q) j B 2 I(t)g),z = x
 y, else.C(x; z) $ if x = p(ptq)q, then z = p!tq ,z =*x, else.E(x; y; z) $ if x = psq, y = ptq for some terms s; t, then z = ps+ tq ,if x = psq and y 6= ptq for any term t, then recover I(s),put z = �w(VfPROOF (w; pB�q) j B 2 I(s)g) � y,if y = ptq and x 6= psq for any term s, then recover I(t),put z = x� �w(VfPROOF (w; pB�q) j B 2 I(t)g),z = x� y, else.By FPE it is immediate that Prf is a provably �1-formula and if PA `  , thenPrf (k; p q) for some k 2 !. 26



6.2 Lemma. PA ` t� = ptq for any term t.Indeed, according to FPE(st)� = m(s�; t�) = m(psq; ptq) = pstq:The same holds for (s+ t)� and !t�; in the latter case we accept an arithmeticalnumeral ptq for ptq as a legitimate �-term.6.3 Corollary. � is injective on formulas and terms from � [�.6.4 Corollary. X� is provably �1 for any X, occurring as a subformula in� [�.Indeed, if X is atomic, then X is �1 by the de�nition of �. If X is [[t]]Y , then([[t]]Y )� = Prf (t�; pY �q);and since PA ` Prf (t�; pY �q)$ Prf (ptq; pY �q)and Prf (ptq; pY �q) is provably recursive, then ([[t]]Y )� surely is. Boolean connec-tives preserve �1.6.5 Lemma. If X 2 �, then PA ` X�, if X 2 �, then PA ` :X�.Proof. This is a standard boolean saturation lemma proven by the induction onX. Basis, i.e. X is atomic or q-atomic. If [[t]]Y 2 �, then PA ` \[[t]]Y 2 �" andPA ` ([[t]]Y )� by FPE. If [[t]]Y 2 �, then PA ` ([[t]]Y )� is false by FPE since � isinjective on formulas and terms from � [�. The induction steps correspondingto boolean connectives are trivial because (�;�) is a saturated pair.J6.6 Lemma. PA ` ' , Prf (n; p'q) for some n 2 !.Proof. It remains to establish ((). From FPE it is clear thatPrf (n; p q) ) \PROOF (n; p q) or  = B� for some B such that [[t]]B 2 �":In the latter case B 2 � by the saturation property of �, and PA ` B� by 6.5.J 27



6.7 Lemma. �zM(x; y; z) and �zE(x; y; z) are provably total.Proof. From FPE by a straightforward formalization of the proofs of 6.5 and6.6 in PA.J6.8 Lemma. Normality conditions for Prf are ful�lled.Proof. Both normality conditions follow easily from the normality of PROOF,FPE and the saturation properties of � and 5.7.JSo, Prf is a normal proof predicate. Now, by lemma 6.5 PA ` :F �, since F 2 �.J6.9 De�nition. For an axiom speci�cation AS an LP-formula F is arithmeti-cally AS-valid if PA ` F � for any AS-interpretation �.6.10 Corollary. (Arithmetical completeness of LP)LP ` F , F is arithmetically AS-validfor some axiom speci�cation AS.6.11 Corollary. (Arithmetical completeness of S4)S4 ` F , F r is arithmetically AS-validfor some realization r and some axiom speci�cation AS.6.12 Corollary. (Arithmetical completeness of Int)Int ` F , [tr(F )]r is arithmetically AS-validfor some realization r and some axiom speci�cation AS.6.13 Remark. 6.10, 6.11 and 6.12 remain valid under a reading of \F is arith-metically AS-valid" as \F � is valid in the standard model of arithmetic for anyAS-interpretation �." 28
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