Operational modal logic*

Sergei N. Artemov!
December, 1995

Abstract
Answers to two old questions are given in this paper.

1. Modal logic §4, which was informally specified by Godel in 1933 as a logic
for provability, meets its exact provability interpretation.

2. Brouwer - Heyting - Kolmogorov realizing operations (1931-32) for intu-
itionistic logic Znt also get exact interpretation as corresponding propositional
operations on proofs; both §4 and Znt turn out to be complete with respect to
this proof realization.

These results are based on operational reading of §4, where a modality is split
into three operations. The logic of proofs with these operations is shown to be
arithmetically complete with respect to the intended provability semantics and
sufficient to realize every operation on proofs admitting propositional specification
in arithmetic.

1 Introduction

A provability reading of a modality OF as
“F' is provable”

was an intended informal semantics for the classical system S4 of propositional
modal logic in Godel‘s paper [4]. Intuitionistic propositional logic Znt has also

* Techical Report MSI 95-29, Cornell University.

tSteklov Mathematical Institute, Russian Academy of Sciences, Vavilova str. 42, Moscow, 117966
RUSSIA, (email:sergei@artemov.mian.su). This paper had been accomplished during a visit
to the Department of Mathematics, Cornell University, Ithaca, NY 14853, USA, in 1995 (email:
artemov@math.cornell.edu).

been supplied with an informal Brouwer-Heyting-Kolmogorov operational seman-
tics in [6], [8], cf.[10]. However, both §4 and Znt have lacked exact descriptions
of their intended semantics. The straightforward interpretation of OF' as

“F is provable in Peano Arithmetic”

leads to logics of formal provability incompatible with S4. Also, Kleene realiz-
ability is known to capture more, than Znt is able to derive. It turns out that
these questions can be resolved on the basis of operational reformulation of modal
logic with realization of functions that appear as operations on proofs.

Nothing is wrong with the Provability Logic, as far as provability in Peano
Arithmetic PA is concerned. However, traditional Provability Logic fails to pro-
vide an adequate model for the informal notion of provability. The arithmetical
formula Provable("F™), i.e.

“there exists a proof x of F”

is weaker than the intended “F' is provable”, since x may be nonstandard. Hence
Provable("F™) — F

is stronger, than the intended
“isf F is provable, then F is true”

As a result the formula Provable("F7) — F' is not provable in arithmetic and the

reflexivity formula
OoF - F

is not derivable in Provability Logic.

To deal with this phenomenon one has to incorporate into modal language
a machinery to keep all proofs “real”. Getting rid of quantifiers over proofs, we
have to use Skolem type functions instead. Where should these functions come
from?

The proof of the Second Godel incompleteness theorem tells much more about
provability properties than the plain modal language is able to express. Modal
provability formulas forget some essential information: for example in the prov-
ability context the usual distributivity formula

O(F — G) = (OF = 0OG)
is a modal version of

“there is a recursive operation m which for a given proof r of F — G
and a given proof y of F produces a proof m(x,y) of G.”

A similar decoding can be done for the transitivity modal formula
OF — OOF :

“there is a recursive operation ¢ which for a given proof © of F' returns
a proof c(x) of “zis a proof of F” 7.

We show that an additional operation on proofs is needed to provide a com-
plete basis for the entire class of operations over proofs which can be specified
in arithmetic by propositional conditions. Three basic operations on proofs can
be naturally interpreted as Brouwer - Heyting - Kolmogorov realizing operations;
Int and S4 are proved to be complete with respect to this sort of realizability.

We introduce the Logic of Proofs LP and show that

S4+F <& there is a realization r of F by proof terms such that LP = F"
and
LPFG < G*is true for every proof interpretation * .

In a certain sense, the logic of proofs is good old §4, but presented in more rich
operational language. This split of classical modalities into a finitely generated
set of operations handles proper realizability and provability. It is expected to be
useful in other applications of modal and provability logics as well.

We will not distinguish between a Aj-predicate and the arithmetical formula
that represents it in Peano Arithmetic PA. We also assume that the system of
arithmetical terms includes so called t-terms (cf. [7],[3]). So, for any arithmetical
formula (%, y) such that PA F VZ3lyp(Z,y), there exists a term vyp(Z,y) such
that PA - VZp(Z, typ(F,y)). In particular, we assume that there are arithmetical
terms for all provably total recursive functions. Closed recursive term is a t-term
1z¢(z) where formula ¢(z) contain no variables other than z. For any arithmetical
formula ¢ by pzp we understand t-term determined by the formula

p(z) ANV < z=p(v),

while pzy | means
Jz(p(z) AV < z=p(v)).

According to the rules for (-terms for any arithmetical formula A(zx)
Alpzp(2)) = 32lip(z) AVw < z2=p(w) A A(2)].

Note, that if A is provably A;-formula and pzp(z) is a closed recursive term,
then A(uzp(z)) is again a provably A;-formula.
Also let Proof (x,y) stand for the usual Godel proof predicate

“z 15 a derivation code of a formula with a code 1y”.

2

Logic of operations on proofs

The language of LP contains

boolean constants T, L, sentence letters S1,...,5,,...
proof letters p1,...,pp,--.

proof axiom constants aq, ..., Gy, - ..

boolean connectives —, ...

functional symbols: monadic !, binary + and x

operator symbol [] ().

The sets T'm of terms and F'm of formulas are defined in a natural way.
Any proof letter and axiom constant is in T'm; any sentence letter or boolean
constant is in Fm; whenever s,t € Tin we have !¢, (s + t), (s x t) € Tn; boolean
connectives behave conventionally, and if F € Fm and ¢ € T, then [t] F €

Fm.

We will write s - ¢ or even st instead of (s x t) and skip parentheses when

convenient. Formulas [[t] F' are called quasiatomic formulas (g-atomic, for short).
Without loss of generality we restrict ourselves to a finite fragment of the LP-
language, assuming that sets of sentence and proof letters, along with a set of
axiom constants, have cardinality < n for some unspecified natural number n.

2.1 Definition. System LP. The axioms are all formulas of the form

AQ. Tautologies in the language of LP
AL [{] F—>F

A2. [tJ(F = G) — ([s] F — [ts] G)
A3. [t] F — [Y][¢] F

Ad. [s] FV [t] F — [s+1t] F

A5. [¢] A, where ¢ is an axiom constant, and A is an axiom AQ - A4.

Rule: modus ponens.

2.2 Comment. The intended understanding of LP is as a logic of operations
on proofs, where [[¢t]F' stands for

“t is a code for a proof of F”.

For the usual Godel proof predicate Proof (x,y) in PA there are primitive recursive
functions from codes of proofs to codes of proofs which correspond to “x” and

“I”. So, “x” corresponds to a concatenation of proof sequences which realizes

“I” is represented by a special case of a
Gadel function appearing in the proof of ¥;-completeness of arithmetic (cf. [11]).
The usual proof predicate has a natural nondeterministic version PROOF (z,y)

the modus ponens rule in arithmetic, and

called standard nondeterministic proof predicate
“z is a code of a derivation containing a formula with a code y’.

PROOF already has all three operations of the LP-language:

e u ® v is the code of the concatenation of u, v and a finite sequence of all
formulas Y such that X - Y eu, X €wv

e u @ v is just the concatenation of proof codes u and v

e ftu for a given w calculates the first code of a proof which contains
PROOF (u,"p;"),..., PROOF (u,"p,")
for all ¢q,..., ¢, from a proof with the code .

There exist natural extensions of the operations ®, @ from numbers to ¢-terms
in such a way, that for any f = pzF(z), g = puG(u) and for any formulas ¢, 1)

PAF PROOF(f, o — ") A PROOF(g,"¢7) — PROOF(f ® g,"4")
PAF PROOF(f,"¢7) V PROOF(g,"¢p") — PROOF(f & g, 7).

The operation f} now consumes the Godel number of a closed recursive term
wzF(z) , and produces the first nondeterministic proof {("uzF(z)™) of all true
formulas PROOF (f," ™) (a finite set). Since PROOF(f,"¢) is a provably A;-
condition, then

PAF PROOF(f,"¢") = PROOF(f("f7)," PROOF (f,"¢™)7).

2.3 Definition. A proof predicate is a provably A;-formula Prf(z,y) such that
for all ¢
PAF ¢ <« forsomen € w Prf(n, ") holds.

For any proof predicate Prf(z,y) under Pr(y) we understand the corresponding
provability predicate: Pr(y) is 3z Prf(xz,y).

2.4 Definition. A proof predicate is normal if

1. for every proof the set of corresponding theorems is finite and the function
T (k) = the code of the set {l | Prf(k,l)}

is total recursive.

2. Prf is supplied with provably total recursive functions m(z,y), e(z,y)
such that for all arithmetical formulas ¢, ¢

PAFEVa,y[Prf(z,"¢ = 7)) = (Prf(y,"¢") = Prf(m(z,y), 9")]
PA =Nz, y[Prf(z,"p™) V Prf(y,"") = Prf(e(z,y), ¢7)].

Note, that PROOF' is a normal proof predicate with m(z,y) =z ®y, e(z,y) =
rDy.

2.5 Lemma. For any nomal proof predicate Prf there is a provably recursive
function c(x) such that for any closed recursive term f

PAE Prf(f,"¢") = Prf(c("f7),"Prf(f,"¢™)7)

Proof. The function ¢ on an input k£ € w works as follows: ¢ recovers the term f
such that £k =" f7 and calculates T'(f). Then for every ¢ from T'(f) it computes
I = lyp such that Prf(l," Prf(f,"¢")7); such [exists by the Xj;-completeness
property of arithmetic, since Prf(f,"¢") is a recursive formula. Finally, c¢(k) is
equal the e-sum of [,’s for all ¢’s from T'(f).

<

From now on we assume that a normal proof predicate is supplied also with a
function ¢(z), satisfying the conclusion of the previous lemma.

Remark. Obviously for any proof predicate Prf with the “summation” function
e(z,y) and any provable formula ¢ the set

Plp) ={new| Prf(n,"¢")}
is infinite recursive. Suppose P(¢y) is finite and consider
P'={e(n,1) | n € P(p), and FpPrf(l,"47)}.

By the normality property of the function e every theorem has a proof from P’
By the assumption about P however P’ C P, i.e. P’ is finite, which gives a clear
decision procedure for PA.

2.6 Definition. Aziom specification (AS) is a finite subset of A5. For any
axiom specification AS by LPss we understand LP with AS instead of A5.
Axiom specification AS is well-founded if for the following binary relation on
axiom constants

a1 > as <& there exists a term t containing as such that

[a]([1]F = F) € AS or [a]([{]F — ['][t]F) € AS,

any chain aq > ag > ag = ... is finite.

2.7 Definition. An arithmetical AS-interpretation * of LP-language has the
following parameters:

1. an axiom specification AS
2. a normal proof predicate Prf

3. an evaluation of sentence letters by sentences of arithmetic, an evaluation
of proof letters and axiom constants by closed provably recursive terms.

We assume that T* = (0 = 0) and L* = (0 = 1), * commute with boolean
connectives, (t-s)* =m(t*,s*), (t+s)* =e(t*,s*), ()" =c("t*"),

([L1F)* is Prf(t*,"F*7),

and
PAF G* for all G € AS.

2.8 Lemma. If an axiom specification AS is well-founded, then for any normal
proof predicate Prf any evaluation *x of proof letters can be extended to an AS-
interpretation based on Prf.

Proof. Consider the following evaluation of constants: those a’s which do not

occur among ci,...,c, in AS are evaluated by arbitrary natural numbers. Sort
the remaining cy,...,c; in an order respecting the relation »>; without loss of
generality we assume that ¢; >~ ¢; = 4 > j. Constants ci,...,c; are evalu-

ated according to a multiple arithmetical fixed point construction: there exist
arithmetical formulas ¢, ..., ¢, such that

0;i(2) < z=pw[Prf(w,"B;1* ") A...\Prf(w," B, ")],

where [¢;]|B; 1, ..., [¢;] Bi, is the total list of formulas from AS which correspond
to ¢; and * is extended to cq,..., ¢, by

¢ = pzp;(z).

7

We claim that PA F pze;(z)] and PA & ([¢;]B;;)* for all i = 1,....k, j =
1,..., k.

By induction on i. Basis, i.e. i = 1. Then AS is {[c1]Bi1,-..,[c1]Bix }-
We claim that PAF By ;* for all j = 1,...,k;. Consider the cases.

AQ. Here By j, therefore By ;* are tautologies, and PA F By ;*.

Al. B;; is [t]F — F. By the well-foundness of AS t contains none of
c; for i = 1,...,k, thus t* is a closed recursive term. Let n be the value of
t*. If Prf(n,"F*7) is true, then PA F F* thus PA F Prf(n,"F*7) — F* If
Prf(n,"F*7) is false, then PAF —=Prf(n,” F*7), and again PA+ Prf(n,"F*7) —
F*.

Cases A2 and A4 follow easily from the normality condition 2 by arguing in

PA.

A3. By is [t]F — ['t][t]F. Here again, by the well-foundness of AS term
t does not contain c¢q,...,c, , thus t* is a closed recursive term and we are done
by 2.5.

Now since PA = By ;* there exists n; € w such that Prf(n;,"B;;*"), thus
PAF Prf(n;,"B1;*") forall j =1,...,k. Put N to be the “sum” in sense of
the function e(z,y) of ny,...,ng,. Clearly

PAt+ Prf(N, ’_Bl’l*j) A...NPrf(N, ’_Bl,kl*j).
Let M be the least natural number such that
PA ‘- Prf(M, ’_Bl’l*j) A...NPrf(M, I—Bl,kl*_‘)-

Then PAF M = pzg,(z), since Prf is provably recursive, and PAF ([¢1]B1;)*
forall j =1,... k.

The induction step is similar to the basis. In the cases A1 and A3 by the
well-foundness of AS term ¢ does not contain constants c¢; with 5 > 4, and thus
t* is again a closed recursive term.
<

2.9 Comment. We might restrict ourselves to well-founded AS only and stick
to a particular procedure of recovering an evaluation of axiom constants from
given AS, Prf and evaluations of sentence and proof letters, say as in lemma 2.8.
This approach works as well; the completeness proof there may be obtained by a
slight modification of the arithmetical fixed point construction from Section 6.

2.10 Theorem. If LPssF F, then PAF F* under any AS-interpretation .

Proof. By induction on the length of derivations in LP. Axioms A2, A4 are
correct by the definition of a natural proof predicate. A0, A1l and A3 have just
been checked within the proof of lemma 2.8. AS is correct by the definition of
an AS-interpretation.

<

2.11 Lemma. (Constructive necessitation)

LPFEF = for some term t of aziom constants LP + [[t]F.
Proof. By induction on a proof of F' in LP. If F is an axiom A0 — A4, then
take [c]F from A5 with a fresh axiom constant ¢. If F'is A5, then use A3. Let
F be obtained from F — F and E by modus ponens. Then, by the induction
hypothesis, LP + [t]E and LP F [s](E — F) for some terms s and ¢. By A2,

LP I+ [st] F.
<

2.12 Corollary.
LPFF —G = Vs3t LPF[s]F — [t]G.

Indeed, if LP F F — @, then, by the constructive necessitation, for some

term u we have LP + [u](F — G). By A2,
LPF [ul(F —G) — ([s] F — [us] G)
and thus LP + [s]F — [us]G.
2.13 Lemma.
Vs, t VF,G Ju LP F [s]F A[t]G — [u](F A G).

Proof. Pick an A5 axiom [c]|(F — (G — F A G)) with a fresh axiom constant

c. By A2

LPF[(F = (G = FAG)) — ([s] F - [es](G— FAG)).

9

Then
LPF [s]F — [es](G — F ANG).

Similarly,
’ LPF [es](G— FAG) = ([t]G = [(es)t](F A G)),

and we are done with u = (es)t.
<

2.14 Definition. By a positive 6-formula we understand a {A,V} combination
of g-atomic formulas.

2.15 Lemma. (Lifting) If D is a {A,V} combination of [t1]Q1,- - -, [tx]Qk, then
fore some term s

LPF D — [s]D.

Proof. By induction on the length of formula D. The case D is g-atomic is
covered by A3. Let now D be FAG. By the induction hypothesis, for some terms
s,t LPss proves both F' — [s]F and G — [t]G. By lemma 2.13 there exists u
such that LP F [s]F A [t]G — [u](F A G).

Let D be FV G. By the induction hypothesis, for some terms s,t LP F
(FVG)— ([s]FV[t]G). By lemma 2.12 there are u,v such that

LPFE [s]F — [u](FVG) and LP F [t]G — [v](F V G).
By A4, and according to the propositional logic

LPF[s]F VG — [u](FVG)V[](FVG) — [u+o](FVG).

2.16 Definition. A derivation D in some LP4g is plain if

1. in all Al axioms [t]F — F and all AS axioms [c]([t]F — F) from D
term ¢ is a proof letter.

2. in all A3 axioms [t|F — [][t]F and AS axioms [c]([¢t]F — ["¢]1[t]F)
term ¢ is either a proof letter or an axiom constant.

10

For two plain derivations D and D' we say that D’ is a fresh extension of D
(notation D' 3 D) if D' is an extension of D and every new AS axiom [c]|B
comes to D' with a fresh constant c.

By “D : F”, where D is a derivation and F' is a formula we understand “D
contains F”.

2.17 Lemma. Let D, D' be plain derivations, F a formula and t an LP-term.
a) If D : F then there exist a term t of axiom constants only and D' 1 D such
that D' : [t]F,

b) If D: F — G then for any term s there exist a term t of aziom constants
and s only and D' J D such that D' : [s]F — [t]G,

c) if Fis a {A\,V} combination of [q1]Q1, ..., [qk]Qk, where q; are proof
letters, then
VDID' D3t D: F — [t]F.

Proof is obtain by a straightforward inspection of the proofs of 2.11, 2.12 and
2.15.
<

2.18 Corollary. Under the conditions of lemma 2.15 there exists a well-founded
aziom specification AS such that LPas b D — [s]D.

3 Functional completeness

Now we establish a remarkable closure property of the basis x,+,!. We prove
that the logic of proofs describes all possible propositional operations on proofs.
The basic operations x,!, 4+ thus play for proofs a role similar to that boolean
connectives play for classical logic.

Consider an arbitrary scheme of an operation of proofs specification in arith-

metic:
=VZE e C Iy 4y is a proof of G(T)”.

(here = means “true in the standard model of arithmetic”) or, equivalently,

E=VZ(C(Z) — 3y “y is a proof of G(Z)”).

11

If C and G are arbitrary arithmetical conditions, one should expect hyperarith-
metical operations on proofs to appear. However, if we restrict C' and G by a
propositional language, although already capable of expressing the proof — theo-
rem relation, every operation on proofs reduces to superposition of x,!, +.

3.1 Definition. The specification language L([-]) is the operation-free frag-
ment of LP-language, i.e. proof variables are the only proof terms in L([[-]).

3.2 Definition. A interpretation * of L([-]) is defined as a interpretation of
LP-language (omitting clauses for functional symbols and axiom constants).

Now we can make C(Z) and G(Z) occurring in
VZ(C(Z) — Ty “y is a proof of G(L)”).

conditions in a propositional specification language L([[-]). Also, we express the
existential quantifier Iy “y is a proof of G(Z)” by the usual provability modality
O, extending the definition of F* by one more item: (OF)* is Pr("F*7).

Finally we restrict C to a “proof positive” condition, i.e. one where the out-
ermost g-atomic subformulas are positive in C.

Indeed, a condition of the sort
=[z] P — O-=[z]P,

although valid for any proof predicate, may hardly be accepted as
an operation on proofs equally as good as X,!,+, because it derives
conclusions from negative information about proofs; here, from “z IS
NOT a proof’.

It seems that now we have found a balanced definition of an operation on
proofs. The regular case

[[:rl]]Cl VAN [[:vn]]Cn — G,

which comes from the straightforward formalization of the notion of an admissible
inference rule

cy, ..., 0,
G

is covered. Further shrinking of C to say conjunctions of g-atomic formulas would
eliminate natural and useful nondeterministic proof predicates.

12

3.3 Definition. @ We may define now an abstract propositional operation on
proofs as a formula

C — 0OdG,

valid under all arithmetical interpretations, where C, G are formulas in the spec-
ification language L([-]) and C' is proof positive.

3.4 Lemma. LP operations X,!,+ can be identified as abstract propositional
operations on proofs.
Proof. Formulas

[z1](F - G) A z2] F - 0OG

[z]F — Ofz] F

[z:]F V [zo] F — OF

are valid under every arithmetical translation since Skolem functions for the ex-
istential quantifiers on proofs in O’s here can be realized by correspondingly

m(z,y), c(z), e(z,y).
<«

The following theorem demonstrates that L£P-terms suffice to realize any
propositional operation on proofs.

3.5 Theorem. For any abstract propositional operation on proofs
C - 0G

there exist an LP-term t and a well-founded aziom specification AS such that

LPus F C = [t]G.

Proof. The proof is based on paper [2], which gives a complete axiomatization
B’ of all valid formulas in the language £([-], D), and on [1] which axiomatizes the
arithmetical validity in the language L([[-]). We consider the following conditions:

1. C — OG is arithmetically valid
2. B'-C— 0OG
3. LPasF C — [t]G for some term t and some well-founded AS.

13

(1) = (2) is the lion share of the job, it follows immediately from the results of
[2]. (2) = (3) is the main lemma of the current section. It is proved below using
Kripke models for B’, the arithmetical completeness theorem from [1] and some
lemmas from the previous sections.

Now we list some results from [1], [2] we need here.

We recall the logic B’ in the language £([-],0). The axioms of B are boolean
tautologies, 0(A — B) — (DA — OB), O(0OA — A) —» 0OA, 0,A —» A, 0,A —
00,4 and -0,A — O(—-0,A), where p is a proof variable, and A and B are
formulas. Rules of B: modus ponens, F + OF, OF + F. The system B’ has as
axioms all theorem of B and all formulas OA — A, and modus ponens as its sole
deduction rule.

System P is the O-free fragment of B’ (or, equivalently, B), and can be ax-
iomatized by O-free axioms and rules of B (cf.[1]). It is easy to see that P is an
(operation-free) fragment of LP.

The Kripke models for B’ are finite irreflexive tree-like orderings, the forcing
relation |= is defined in the usual way for booleans and O, and

l.Vee Kz =0,A or Vo € K z |=-0,A for every g-atomic formula 0, A
(stability)

2. z=0,A = z=A forevery gq-atomic formula 0,4
(q-reflexivity)

Let H(F) = N{OB — B | OB is a subformula of F'}. We call a model F'-sound
if its root forces H(F'). For any L([-], O)-formula F'

B'FF < F holds at the root node of every F-sound model.

Models for P are just singleton B’ models.

Let C — OG be arithmetically valid.
3.6 Lemma. B'FC — OG.
Proof. This is a corollary of the arithmetical completeness theorem for B’ from
[2].
<

3.7 Lemma. LPsstkC— G with empty AS .

Proof. Since B'+ C — OG, we have B' - C — G. Formula C — G is O-free,
thus PFC — G and LPss - C — G with AS being empty.

14

3.8 Corollary. If C,G are formulas in the language L([-]) and C is a positive
0-formula, then there exists an LP-term t and a well-founded axiom specification

AS such that LPas F C — [t]G.

Proof. By 3.7 LP + C — G with the empty axiom specification. By 2.17(c)
there is AS there is such that LPas F C — [u]G for some term u. By 2.17(b)
for some new AS there exists ¢t such that LP4s F [u]C — [t]G, thus LPas F
C — [t]G.

<

3.9 Lemma. IfB'+ C — OG, then there exists a d-formula Q such that

BrFC—Q and BFQ— OG.

Proof. The set of P-models of the variables from C is finite; pick those, where
C is true, say ay,...,a,. Let f1,...,Hl, be truth assignments of atomic and
g-atomic subformulas of C in a4,...,a, correspondingly. For any atomic and
g-atomic subformula F' of C and every § € {f1,...,#,} we define

it F, iffis true on F
| —F, iffis false on F.

Fori=1,...,n, let
C; = /\{Fﬁ" | F' is an atomic or g-atomic subformula of C'}.

Then P+ C < (Cy V...V (). Indeed, if not, then C' « (Cy V...V C,) should

be false in some model a of P. If C is true in a, then ¢ = a; for some i =1,....n,

and Cj; is true in a. If C it false in a, then all C;’s are also false in a, since P-model

is totally determined by truth assignments of atomic and g-atomic subformulas.
Let C;” be the g-part of Cj, i.e.

C; = /\{Ful | F' is a g-atomic subformula of C'},
and let Q = C; V...V, . Note, that () is a positive /-formula, since C is proof

positive. P = C — @Q is easy, since P = C; — C;, 1 = 1,...,n. So we have
B'-C— Q.

15

Suppose B' I/ Q — OG. Then for some model K of B, @ is forced at the root
node a of K, but =G is forced at some node b above a. In this situation there
exist 4 = 1,...,n such that a I C; . Consider a new model K' with the frame
a; < b, and truth assignments at a; as in the P-model a;, and in b according
to the model K. We claim that K’ is a B’-countermodel for C — OG, which
is impossible according to the conditions of the lemma. Indeed, b If G, thus
a; I OG and a; IF OG — G. Also, a; IF C by the choice of a;. The condition
of g-reflexivity is fulfilled at a; and b since they are both nodes of legitimate B’-
models. The stability condition is also satisfied, since it holds for a pair a,b in K
and truth assignments of g-atomic subformulas of C at a; and a coincide.
<«

This completes the proof of the theorem 3.5.
<«

4 Realization of modal logic

Let F° be the result of substituting O for all occurrences of [¢] in F, and X° =
{F°| F € X} for any set X of LP-formulas.

4.1 Lemma. (LP)° C S4.

Proof. This is a straightforward induction on a derivation in LP.
<

The goal of the current section is to establish the converse, namely LP suffices
for realization of any S4 theorem. By an LP-realization r = r(AS) of a modal
formula F' we mean

1. an assignment of LP-terms to all occurrences of the modality in F,
2. a choice of an axiom specification AS;

F7 is the image of F under a realization r. A realization r is normal if all negative
occurrences of O are realized by proof letters.

4.2 Theorem. IfS4F F, then LPas = F" for some well-founded azxiom speci-
fication AS and some normal realization r = r(AS).

Proof. Consider a cut-free sequential formulation of §4, with sequents 7 = A,
where 7 and A are multisets of modal formulas. Axioms are sequents of the form

16

S = S, where S is a sentence letter. Along with usual structural rules and rules
introducing boolean connectives there are two proper modal rules

AT = A a7 = A
A——— Y - (=0

0A4,7 = A and 0?7 = 0OA

(A is a formula, 7, A - multisets of formulas, O{A;,..., A,} = {0OA,...,04,}).
If S4 + F, then there exists a cut-free derivation T of a sequent = F. It
suffices now to construct a normal realization r and a plain L£P-derivation D
which contains all LP-formulas LP~ = A?7" — \/ A" for any sequent 7 = A in
T. We write 7 instead of A7 and A for \/ A whenever unambiguous.
Positive and negative occurrences of modality in a formula and a sequent are
defined in the usual way.

1. An indicated occurrence of O in OF is positive.

2. A corresponding occurrence of O in F and G — F, GAF, GV F, OF and
(? = A, F) has the same polarity.

3. A corresponding occurrence of O in F and —=F, F — G and (F,?7 = A)
has opposite polarities.

Note that in a cut-free derivation 7T, the rules respect polarities, all occurrences of
O introduced by (= O) are positive, and all negative occurrences are introduced
by (O =) or by weakening.

Occurrences of O are related if they occur in related formulas of premises and
conclusions of rules; we extend this relationship by transitivity. The following
example demonstrates how related boxes (painted black) proliferate through a
contraction rule:

4.3 Example.

All positive occurrences of O in T are naturally split into disjoint families of
related ones; we call a family essential if it contains at least one case of (= O)
rule.

17

Now the desired r will be constructed by stages A — C. We reserve a large
enough set of proof letters as new term variables; so there are proof letters, axiom
constants and term variables at our disposal as term generators. Eventually we
will get rid of the term variables in the final realization r and in the corresponding
proof of F" in LPxs.

Stage A. Every negative family and nonessential positive family is realized by
a fresh proof letter.

Stage B. Pick an essential family f, enumerate all the occurrences of rules
(= O), which introduce boxes of this family and let ny be the total number of
such rules for the family f. Realize all boxes of the family f by the term

(1 + ... +zny),

where z;’s are fresh term variables.

Stage C. Proceed with the following process of
- assigning to a sequent 7 = A an LP-term ¢ (containing no term variables)
and upgrading a plain derivation D in order to reach

D:[t](7 = A),

- possibly substituting some LP-term s for a term variable,
- moving downwards.

We start from the axiom nodes. Assign a fresh axiom constant a to each axiom
S = S. Clearly [a](S — S) is a proof of itself.

Weakening rule:
7= A

Y7 = A
Let term ¢ be assigned to 7 = A. Pick a fresh axiom constant b, add
[1((? = A) = (Y A? = A))
to D. Then, by A2 find a new D such that
D:[bt](Y A7 — A).
Weakening rule (succedent) is treated similarly.

Contraction rule:
YV,7 = A

Y, 7 = A

18

Let term ¢ be assigned to Y,Y,? = A. Pick a fresh axiom constant b, add
[PI(Y AYA? 5 A)= (Y AT = A))
to D. Then, by A2 find a new D such that
D:[otJ(Y A? — A).

Similar treatment should be given to all remaining structural rules and rules
introducing boolean connectives.

Rule (O =) has already looked like:

X, 7= A
] X,? = A

for some proof letter p. Let term ¢ be assigned to the premise X,? = A. Extend
D by [b]([p]X — X) for a fresh axiom constant b. Since D : [t[(X A7 — A), it
is now an easy exercise to construct ¢ and D’ J D such that

DX = (7 = A)),
then s(¢',b) and D" 3 D' such that
D" [s(t,)I([PIX — (7 — A)),
and finally s'(#',b), D" 3 D" such that
D" IS, D)]([p] X A7 — A).

Let an occurrence of the rule (= O) have number 7 in the numbering of all
rules (= O) from a given family f. This rule already has a form

[lY1, .- [a]Ye = Y
[[ql]]Y17 ety [[Qk]]Yk = [[U1 +...+ unf]]y }

where q1,..., g, are proof letters, uy, ..., u,, are LP-terms, and u; is a term
variable; assume the latter condition to be built-in an inductive hypothesis. Let
term ¢ be assigned to [q1]Y1,...,[¢]Yr = Y, ie.

D:[tl([a1]Yi A Alar]Ye = Y).

By the lemma 2.17(c), there exists an LP-term s of axiom constants and proof
letters qi,...,q; and D' 3 D such that

D []Ya Ao Alae]Ye = [s]([aa]Ya A -2 A [ar] Ye)-

19

By A2 we get D" O D' such that
D" [sI([q1]Y1 A - - A lar]Ye) — [Es]Y-
By A4 we construct D" I D"
D" ts]Y = [ur + ... +ui g +ts +uigy + ...+ up, JY.

Finally, D" has a straightforward fresh extension D"" such that

k
D" /\ [a:]Y: = [w +...—|—uz~,1+ts+ui+1+...+unf]]Y.
i=1

By the lemma 2.17(a) there exist an LP-term b of axiom constants only and
D" 3 D" such that

k
. [[b]](/\ la:]Ys = [wr + ... +uir +ts +ujpr + ...+ Unf]]Y).
=1

Finally, we substitute term ts for variable u; everywhere in 7 and in D ; this
remains possible since ts does not contain term variables. Also, D remains a
plain derivation since this substitution does not effect proof letters and axiom
constants.

By the end of stage C all the term variables are replaced by LP-terms of proof
letters and axiom constants, which determines the desired normal realization r.
By the construction the LP-proof D contains F".
<

Combining 4.1 and 4.2 we get
4.4 Corollary.

S4+F < LPFF" for some realization r.

4.5 Comment. The realization algorithm above produces a normal realization.
Godel in [4] defined a translation ¢r of an intuitionistic formula, into an S4-formula
where ¢r(F) is obtained from F' by prefixing every subformula of the latter by O.
This Godel translation is shown ([4], [9]) to provide an exact embedding of Znt
into §4: for any Int-formula F

IntkF & S4F tr(F).

20

The Brouwer - Heyting - Kolmogorov operations via Godel embedding of Znt into
S4 may now be regarded as LP-terms under normal realization of §4. The proof
interpretation of LP-terms makes this defitinition precise. Note, that by 4.2 the
proof constructed for F" in LP also produces a well-founded axiom specification

AS for FT.

4.6 Corollary. For any Int-formula F

Int-F < LPF (tr(F))" for some realization r.

By 2.10 and 4.2 we have

4.7 Theorem. (Arithmetical correctness of §4)

S4+F = there exist a (well-founded) axiom specification AS
and a (normal) realization r(AS) of F such that
PAE (F7)*

for any AS-interpretation x.

5 Canonical model

5.1 Definition. The saturation algorithm A starts from a LP-formula F' and
an axiom specification AS such that

LPus F,

and produces a pair of sets (7, A) of LP-formulas by cycles of transformations 1-6
below. Each step 1 — 6, before performing “goto” command, does the following
test: “If 7 N A # 0, then backtrack to the nearest branching point and if no paths
remain unexplored, then terminate with failure. If no transformations 1 — 6 can
be applied, terminate with success’.

0. Put Ag={L,F}and 79 ={T}U{[c]A] [c]A € AS}, goto 1.

1. For every formula X — Y € 7 which has not been discharged by the rule 1
before nondeterministically put Y into 7, if Y & 7 or put X into A, if X ¢ A, and
discharge the formula X — Y € 7. This is a branching point, and A backtracks
(if any) to one of these points. If a backtracking happens, then all the discharges
occured during the backtracked period are canceled. Goto 2.

21

2. For all formulas X — Y € A put X into 7, unless X € 7, and put Y into
A, unless Y € A, goto 3.

3. For all [t]X € 7 such that X ¢ ? put X into 7, goto 4.

4. For all pairs [s]X € 7, [t](X — Y) € 7, put [ts]Y into 7, if it has not
been there before, goto 5.

5. For all [t]X € 7 put ['][¢t]X into ?, if it has not been there before, goto

6. For all [t]X € ? and all s occurring in the current pair (?,A) put both
[t + s] X and [s + ¢] X into 7, if they have not been there before, goto 1.

It is clear, that saturation algorithm either terminates with failure or termi-
nates with success or runs forever.

5.2 Lemma. If A terminates with failure, then LPys - F.

Proof. This is a fairly standard lemma. Consider a finite tree 7 of a failed
saturation process. Every node of T is a pair (7, A) of finite sets of LP-formulas.

By an easy induction on the depth of a node in 7 we can prove that LPss -7 —
A. Thus LPas F F.
<

Without loss of generality we may assume that A runs forever.

Let |t| denote the length of ¢. Let also Sb denote the set of all subformulas
of (79,Ay), and let N be maximum of the cardinality of Sb and the lengths of
terms, occurring in Sb. Let

7 = {X | [t]X €? for some t},
and M(?) =7 NSb. A cycle is one turn of transformations 1 6 in an A run.

5.3 Lemma. If none of 1, 2, 8 is active and no backtracking occurs during
consecutive 2N cycles, then no more activities of 1, 2, 8 or backtrackings will
ever occur.

Proof. Assume the conditions of the lemma. Let
mj = man{|t| | [t]F is put to ? at the cylcle j}.

(a) mjy1 > my. Indeed, consider the cycle j+1 and let [t]F appears in ? during
this cycle. Consider three cases: 4, 5 and 6.

22

If [t]F is introduced by 4, i.e. from [u](X — F) € 7 and [v]X € ? with
t = ww, then at least one of these formulas appeared in 7 during the j’s cycle;
otherwise [[t]F would appeared in 7 during the cycle j or earlier. Thus

t| = |uv| > max(|ul, |v]) > m;.

If [t] F is introduced by 5, i.e. from [u] X € 7, and ¢t =lu, F = [u] X, then
[u] X appeared in 7 either during the cycle j or by the rule 4 of the cycle j + 1.
In both cases

it = | > |u| > m;.

Case 6 is similar to 5. Thus (a) is established.

Let 5 denote the number of 4-5-6 cycles which have passed after the beginning
of the interval from the conditions of the lemma, and let 7; denote the set ?
immediately after the last rule of the cycle 5 was performed.

(b) If 5 > N and M(?;) = M(? j4+1), then M(?;) = M(?y) for all k& > j.

Indeed, suppose the opposite and pick the first & > j such that M(7;) #
M (7). Again, consider the first rule of 4, 5, 6, which changes M (7 ;) at the cycle
k.

It cannot be 4: from [s]X € 7 and [t](X — Y) € ? put [[ts]Y into 7, because
for this rule both X, X — Y are from Sb, thus X, X =Y € M(? ;1) = M(?;),
and Y is already in M (7 j41).

It cannot be 5: from [t] X € ? put ['t][¢] X into 7. Indeed, by (a) [t| > N
and the formula [¢] X is too long to be in Sb.

It cannot be 6 either, since this rule does not change M (7).

(c) If 5 > N and M(?;) = M(? j41), then no rules 1, 2 or 3 can apply at all
after the cycle 7 + 1.

Indeed, consider the first active rule of 1, 2, 3 after the cycle 7 from the
assumption (c), i.e. 7 > N and M(?;) = M(?j41). Let it happen during the
cycle k > j+1, note that by (b) M (?x) = M(?_1) = M(?_2). This rule cannot
be 1, since it applies to new formulas of the form X — Y, and no such formulas
appeared at the cycle k£ | 1. It cannot be 2 either, since no changes of A happen
at the cycle k L 1. Suppose it is 3 that applies at the cycle k to [t]F. Then [t]F
appeared at the cycle £ 1 1 by one of the rules 4, 5, 6.

If by 4, then F € M(?7y), thus FF € M(7;_5) and F € 74 1 by the rule 3
during the cycle & L 1. So, 3 does not apply to [t]F.

If by 5, then F' = [s]| X, ¢t =!s, and [s]X € 74_1. Again, 3 does not apply to
[t]F.

If by 6, then [t]F = [u + v]F and one of [u] F, [v]F is from ?;_;. Suppose
[u] FF € 7k_1. If [u] F € 7k_9, then F € 751 by the rule 3 at £ L 1, and 3 does

23

not apply to [t]F at k. So, [u] F' is introduced during the cycle £ L 1 by 4 or 5.
It cannot be 4, because then F € M (7 1) = M(?7,_2) and F € 7j_;. It cannot
by 5 either since then again F € 74_1. So (c) is established.

(d) Since M (7 ;) is monotone on j and M (? ;) C Sb it takes not more then N
cycles after the first N ones until we meet M (? ;) = M(? j41). After this moment
no further backtracking is possible and A runs forever.
<

5.4 Lemma. If an interval of an A-run without backtrackings is longer than
8N? cycles, then no more backtrackings can happen during this run.

Proof. Suppose the opposite, i.e. that A backtracks after an interval of more
than 8 N2 cycles without backtracking. By the previous lemma rules 1, 2, 3 cannot
all stay passive during more than 2N consecutive cycles without backtracking.
Each of 1, 2, 3 cannot be active more than N times, since their inputs are formulas
from Sb. That gives us a bound (3N L 1)(2N + 1) +1 = 6N? + N < 8N? after
which no more backtrackings can happen.

<

5.5 Lemma. Fach run of A makes not more than 2V backtrackings.

Proof. From what we have already learned about A, no formulas X — Y other
than from Sb can ever appear in 7, not more than N binary choices to break
X — Y by the rule 1, not more than 2V variants.

<

Thus, after finite amount of returns an infinite computational process will no
longer backtrack; let (7, A) denote the limit of current 7’s and A’s correspond-
ingly. The following lemma summarizes our knowledge about the saturation pro-
cess.

5.6 Lemma. (Stabilization lemma) After j cycles with j > N?-2N*+3 no more

backtrackings can occur, only rules 4, 5, 6 can be active, all newcomings are to 7
and have a form [t]X with a term t having length greater than j L N2 -2N+3,

5.7 Corollary. A is finite, 7 is recursive, a set I(t) = {B | [t]B € 7} is finite
for every term t, a function from t to 1(t) is recursive.

24

Proof. A is finite, since A C Sb. To decide whether a k£ symbols long formula
H isin ? it suffices now to wait i = k4 N2-2V*3 cycles of A and to check H € ?;
for a finite set 7;. The same argument applies to a function from ¢ to I(t).

<«

5.8 Lemma. If algorithm A on a given formula F' succeeds or runs forever, then

LPas I/ F.

The proof is a standard canonical model argument. Complete (7, A) to a maximal
consistent pair of sets, define (7, A) = @Q as Q € 7 for any atomic or g-atomic
Q, prove that (?,A) = H <& H € ? and (?,A) = LP4s. Conclude, that
LPus i/ F, since F' € 7. However, we’ll get the claim of this lemma for free after
the arithmetical competeness theorem 6.1 below.

5.9 Corollary. LPus is decidable for any AS.

6 Arithmetical completeness

6.1 Theorem. For any LP-formula F and any aziom specification AS

LPas t/ F = F"is false for some AS-interpretation .

Proof. Let LPys I/ F. Run the saturation algorithm A on F', which by
lemma 5.2 either succeeds or does not terminate. Without loss of generality we
may assume the latter, and let 7, A denote the limit of current ?;’s and Aj’s
correspondingly. By 5.7 7 is recursive and A is finite.

We define the desired interpretation * on sentence letters S;, proof letters p;
and axiom constants a; first. Put

« Jit+l=di4+1, ifS5€e? P ‘ ‘
Sl_{i+1:0, ifs; g7, PT P G =G
The remaining parts of * are constructed by a multiple arithmetical fixed point
equation. Let (PROOF, ®, @, !) be a standard nondeterministic proof predicate
from 2.2. For technical convenience and without loss of generality we assume that
PROOF ("t k) is false for any LP-term ¢ and any k € w.

25

In what follows * is based on Prf as proof predicate,
x* =pzM(z,y,2), +°=pzE(x,y,2), " =pzC(x,z).
Note, that "B*" can be calculated in a primitive recursive way from
CPrf(z,y)", "M(x,y,2)", "C(x,2)","E(x,y,2)"

for any subformula B from 7 U A.

By the arithmetical fixed point argument there exist arithmetical formulas
Prf(z,y), M(x,y,z), E(z,y,2), C(x,z) such that PA proves the following fized
point equation (FPE):

Prf(z,y) <+ PROOF(z,y) V
V(“r ="t for some LP-term t” ANy ="B*7 A “[t]B € ?7).

M(z,y,z) < ifx="s"andy="1t" for some terms s,t, then z ="st" ,

if t ="s" and y # "t for any term t, then recover I(s),

put z = pw(A{PROOF(w,"B*") | B€ 1(s)}) ®y,

ify="t" and x # s for any term s, then recover I(t),
put z =z @ pw(A{PROOF (w,"B*7) | B € I(t)}),

z2=1rQY, else.

C(z, z) & ifx="(TE)7, then 2z ="1t7
z =z, else.

E(z,y,z) <« ifxz="s",y="t" for some terms s,t, then z ="s+ 1",

if £ ="s" and y # "t for any term t, then recover I(s),
put z = pw(A{PROOF (w,"B*") | Be I(s)}) &y,

ify="t" and x # s for any term s, then recover I(t),
put z = 2 & pw(A{PROOF (w,"B*7) | B € I(t)}),

z=x®y, else.

By FPE it is immediate that Prfis a provably A;-formula and if PA + 1), then
Prf(k,"¢™) for some k € w.

26

6.2 Lemma. PAF t* ="t" for any term t.
Indeed, according to FPE
(st)* =m(s*,t*) =m("sT,"t7) = Tst™.

The same holds for (s 4 ¢)* and !t*; in the latter case we accept an arithmetical
numeral "¢ for "¢ as a legitimate ¢-term.

6.3 Corollary. x is injective on formulas and terms from 7 U A.

6.4 Corollary. X* is provably Ay for any X, occurring as a subformula in
7T UA.

Indeed, if X is atomic, then X is A; by the definition of x. If X is [t]Y, then
(1Y) = Prf(t",7Y™),

and since

PAF Prf(t*,7Y*7) < Prf("t7,7Y*7)

and Prf("t7,"Y*7) is provably recursive, then ([{]Y)* surely is. Boolean connec-
tives preserve Aj.

6.5 Lemma. If X €7, then PAF X*, if X € A, then PAF - X*.

Proof. This is a standard boolean saturation lemma proven by the induction on
X. Basis, i.e. X is atomic or g-atomic. If [¢{]Y € 7, then PAF “[t]Y € ?” and
PAF ([t]Y)* by FPE. If [t]Y € A, then PAF ([¢t]Y)* is false by FPE since * is
injective on formulas and terms from ? U A. The induction steps corresponding
to boolean connectives are trivial because (7, A) is a saturated pair.

<

6.6 Lemma. PAF ¢ < Prf(n,"¢") for somen € w.
Proof. It remains to establish (<=). From FPE it is clear that

Prf(n,"¢7) = “PROOF(n,"¢7) or) = B* for some B such that [t]B € 7”.

In the latter case B € 7 by the saturation property of 7, and PA - B* by 6.5.
<

27

6.7 Lemma. puzM(x,y,z) and uzE(x,y,z) are provably total.

Proof. From FPE by a straightforward formalization of the proofs of 6.5 and
6.6 in PA.
<

6.8 Lemma. Normality conditions for Prf are fulfilled.

Proof. Both normality conditions follow easily from the normality of PROOF,
FPE and the saturation properties of 7 and 5.7.
<«

So, Prf is a normal proof predicate. Now, by lemma 6.5 PA F —F*, since F' € A.
<

6.9 Definition. For an axiom specification AS an LP-formula F' is arithmeti-
cally AS-valid if PAF F* for any AS-interpretation .

6.10 Corollary. (Arithmetical completeness of LP)

LPFF & Fis arithmetically AS-valid
for some axiom specification AS.

6.11 Corollary. (Arithmetical completeness of S4)

S4+F <& F" is arithmetically AS-valid
for some realization r and some axiom specification AS.

6.12 Corollary. (Arithmetical completeness of Znt)

Int-F < [tr(F)]" is arithmetically AS-valid
for some realization r and some axiom specification AS.

6.13 Remark. 6.10, 6.11 and 6.12 remain valid under a reading of “F' is arith-
metically AS-valid” as “F* is valid in the standard model of arithmetic for any
AS-interpretation *.”

28

Acknowledgements.

The research described in this publication was supported in part by the Russian
Foundation for Basic Research, grant No. 93-011-16015; the International Science
Foundation, grant No. NFQ300, and by INTAS grant No. 94-2412.

This work has benefited from many interactions over the past several years
with a number of mathematicians, logicians and computer scientists: L. Beklemi-
shev, J. van Benthem, G. Boolos, D. van Dalen, E. Engeler, J.-Y. Girard, G. Jager,
D. de Jongh, F. Montagna, A. Nerode, E. Nogina, D. Roorda, T. Strassen,
A. Troelstra, A. Visser.

I am indebted to Tanya Sidon for a careful reading of this paper which led to
valuable improvements.

References

[1] S. Artémov and T. Strassen, “The Basic Logic of Proofs,” Lecture Notes in
Computer Science , v. 702 (1993), pp. 14-28.

[2] S. Artémov, “Logic of Proofs,” Annals of Pure and Applied Logic, v. 67 (1994),
pp- 29-59.

[3] D. van Dalen, Logic and Structure, Springer-Verlag, 1994.

[4] K. Godel, “Eine Interpretation des intuitionistischen Aussagenkalkuls”,
Ergebnisse Math. Collog., Bd. 4 (1933), S. 39-40.

[5] D. Guaspari and R.M. Solovay, “Rosser sentences,” Annals of Mathematical
Logic, v. 16 (1979), pp. 81-99.

[6] A.Heyting, “Die intuitionistische Grundlegung der Mathematik”, Erkenntnis,
Bd. 2 (1931), S. 106-115.

[7] D. Hilbert and P. Bernays, Grundlagen der Mathematik, Springer, 1934-1939.

[8] A. Kolmogoroff, “Zur Deutung der intuitionistischen Logik,” Math. Ztschr.,
Bd. 35 (1932), S.58-65.

[9] J.C.C. McKinsey and A. Tarski, “Some theorems about the sentential calculi
of Lewis and Heyting”, Journ.Symb. Logic, v. 13 (1948), pp. 1-15.

[10] A.S. Troelstra and D. van Dalen, Constructivism in Marthematics. An In-
troduction, v. 1, Amsterdam; North Holland, 1988.

[11] C. Smorynski, “The incompleteness theorems”, in Handbook of mathematical
logic, Amsterdam; North Holland, 1977, pp. 821-865.

29

