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ON FIRST ORDER LOGIC OF PROOFS
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Abstract. The Logic of Proofs LP solved long standing Gödel’s prob-
lem concerning his provability calculus (cf. [4]). It also opened new lines
of research in proof theory, modal logic, typed programming languages,
knowledge representation, etc. The propositional logic of proofs is de-
cidable and admits a complete axiomatization. In this paper we show
that the first order logic of proofs is not recursively axiomatizable.
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1. Introduction

The study of provability by means of modal logic was originated by Gödel in
1930s in [11, 12]. He suggested reading the modality � as provability; so the
formula �F is interpreted as “F is provable”. This Gödel’s proposal led to two
substantially different provability interpretations of �F each having its own specific
mathematical model. We will call them model A and model B.

Model A treats modal sentence �F as a formal proposition “F is derivable in
Peano Arithmetic PA”, which in turn can be expressed by an arithmetical formula.
Provability Logic consists of modal formulas which are valid under this interpreta-
tion. Definitions and detailed presentation of results concerning this approach can
be found in [9]. The well known Solovay Completeness Theorem (see [9] or [17])
shows that the propositional Provability Logic is decidable, admits a concise axiom-
atization and a natural semantical characterization in terms of Kripke models. In
fact, Solovay has shown that the modal logic GL1 axiomatizes all propositional prop-
erties of the formal provability predicate. The logic GL is a normal classical modal
logic having modal axioms �(P → Q) → (�P → �Q) and �(�P → P ) → �P .
The latter is known as Löb’s Principle: it is a direct formalization of the well known
Löb’s theorem [9, 16]. Artemov and Vardanyan in [1, 19, 8] showed that the first
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order Provability Logics is not recursively axiomatizable (in fact, the lower complex-
ity bounds for all its reasonable versions are the worst possible). Comprehensive
surveys of studies in Provability Logics can be found in [9, 13].

Model B was defined by Gödel axiomatically via his famous modal provability
calculus a. k. a. modal logic S4 which eventually led to the Gödel’s problem men-
tioned above2. Gödel pointed out in [11, 12] that S4 is incompatible with model A
(which reads �F as a formal provability assertion “F is derivable in Peano Arith-
metic PA”). More exactly, the reflexivity axiom �F → F of S4 along with the
necessitation rule H ` �H produce a formula �(�F → F ) which is false under
the formal provability interpretation A. Indeed, if F is interpreted as the boolean
constant false, then �(�F → F ) asserts the provability of consistency in PA,
which does not take place by the Gödel Second Incompleteness Theorem. Despite
Gödel’s hints in [12] and quite a history of attempts to solve it, the problem of
provability semantics for Gödel’s provability calculus S4 remained open for more
then 60 years until it was solved by the Logic of Proofs LP (cf. [4]) which combined
explicit character of λ-calculus with iterative capacities of modal logic. It turned
out that Gödel’s provability calculus S4 corresponds to the reading of modalities
�F as explicit provability assertions “ t is a proof of F” for an appropriate proof
term t (called a proof polynomial). A complete decidable axiom system of proposi-
tional logic of proofs (called the Logic of Proofs LP) was presented in [2, 3, 4]. Logic
of Proofs also gives a fair mathematical model for the intended Brouwer–Heyting–
Kolmogorov semantics for the propositional intuitionistic logic. In addition, proof
polynomials subsume typed λ-calculus and typed combinatory logic. Those fea-
tures make proof polynomials and the Logic of Proofs attractive for applications
in typed programming languages, knowledge representation, automated deduction
and verification, etc.

In this paper we consider logic of proofs formulated in the first-order language
(see also [7, 15, 20]). In Section 2 we discuss the appropriate first order language
of logic of proofs and give exact definitions of arithmetical semantics and of first
order logic of proofs. The answers to natural axiomatizability questions for the first
order logic of proofs considered in this paper are all negative. In Section 3 we prove
that if proofs are represented by special symbols for recursive functions then the
corresponding logic is nonaxiomatizable. In Section 4 we consider first order logics
with proof constants; we also show that these logics are not axiomatizable.

2. Main definitions

2.1. Some standard definitions and facts. Firstly, let us recall several stan-
dard definitions and facts concerning Peano Arithmetic (see [16] for details).

2Gödel’s problem was raised in [11] where Gödel introduced a special modal calculus for prov-
ability (S4) and used it to provide an intended provability interpretation for intuitionistic logic.

In this paper Gödel noticed that the straightforward interpretation of S4-modality as of the for-
mal provability operator does not work, thus leaving open the problem of finding a provability

interpretation to S4. In [12] Gödel considered this problem once again and specified the format

of the intended solution. The Logic of Proofs gives the solution to Gödel’s problem in the format
suggested in [12].
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Hierarchy of arithmetical formulas. By induction on n we define Σn-formulas
and Πn-formulas as follows: both Σ0-formulas and Π0-formulas are formulas in
which all quantifiers are bounded, Σn+1-formulas have the form ∃xϕ where ϕ is
Πn, Πn+1-formulas have the form ∀xϕ where ϕ is Σn.

A formula is provably Σn (or Πn) if PA proves that it is equivalent to a Σn (or,
respectively, Πn) formula. A formula is provably ∆n if both the formula and its
negation are provably Σn.

Also we shall use the following definitions and facts from recursion theory (see
[14] for details).

A set R of natural numbers is arithmetical if there exists an arithmetical formula
ϕ(x) such that

n ∈ R ⇐⇒ ϕ(n) is true

for every n. Arithmetical relations on natural numbers are the ones corresponding
to arithmetical sets.

Arithmetical hierarchy. It is well-known that all decidable sets are arithmetical.
Arithmetical hierarchy separates arithmetical relations with respect to the least
number of alternating quantifiers in a prenex formula which defines the relation in
terms of decidable relations. A set is Π0 if it is decidable. A set is Σn+1 if it is a
projection of a Πn-set. A set is Πn if its complement is a Σn-set. For example, the
class Σ1 consists of all recursively enumerable sets.

This definition can be easily modified for sets of words in any finite alphabet with
the help of the appropriate coding of words by numbers (i. e., Gödel numbering).
So we can speak about arithmetical sets of formulas and so on.

In what follows X and Y are sets of natural numbers. A set X is called m-re-
ducible to Y if there exists a total recursive function f such that for every n

n ∈ X ⇐⇒ f(n) ∈ Y.

If this function f is one-to-one then we say that X is 1-reducible to Y .
Classes Σn and Πn are close under m-reducibility: if Y ∈ Σn (Πn) and X is

m-reducible to Y then X ∈ Σn (Πn). In particular, if Y is decidable or recursively
enumerable then so is X.

Let K be any of classes Σn and Πn. We say that a set X is K-hard if any set from
K is 1-reducible to X. If X is K-hard and X ∈ K then X is called K-complete.

2.2. The language of first order logic of proofs. By predicate language L
we mean the first order language without function symbols and equality containing
countable set of predicate letters of any arity.

First order provability logic is formulated in the extension of the language L by
the modal operator � for provability; the modal formula �F is interpreted as a
proposition about provability “there exists a proof of F”. As we mentioned before,
the transition from Provability Logic to the Logic of Proofs, generally speaking,
consists in eliminating the existential quantifiers hidden in the modality of prov-
ability and replacing them by the concrete proofs. In the propositional logic the
formula F above represents a proposition without parameters. So the proof of F
needs not depend on the parameters, thus it can be represented by proof variables
ranging over codes of proofs, or natural numbers.
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In order to define an appropriate language of quantified logic of proofs let us look
at the provability formula �A(x), where a formula A under the modality depends
on a parameter x. It represents the proposition “for a given x the formula A(x)
is provable” which contains x as a parameter (see [1, 19]). If we write down the
existential quantifier on proofs hidden in the provability operator, then we obtain
the proposition “for a given x there exists y such that y is a code of proof of A(x)”
with two parameters x and y. Then the standard procedure of skolemization (which
consists, roughly, in replacing existential quantifiers by function symbols) provides
us with a function f which produces a proof of A(x) being given a number x.

�A(x) [[f(x)]]A(x)
⇑ ⇑

intended intended
interpretation interpretation

⇓ ⇓
“for a given x there exists y

which is a proof of A(x)” ⇐ skolemization ⇒ “for a given x, f(x)
is a proof of A(x)”

The language Lf described below captures Skolem functions of this sort. It is the
extension of the predicate language L by symbols for recursive functions on proofs
and operational symbol [[·]](·) for proof predicate.

Definition 1. The language Lf contains:

– individual variables x, y, z, . . . ,
– countable set of predicate letters of any arity P, Q, R, . . . ,
– countable set of proof functional letters of any arity: f, g, h, . . . ,
– operational symbol [[·]](·),
– boolean connectives and quantifiers.

Let Lc denote the fragment of the language Lf which contains only constants on
proofs (i. e., proof functional letters of arity 0).

Formulas of the language Lf are defined in the standard way with the only
additional clause for formulas representing proof predicate. We denote the set of
formulas by Fm(Lf ). So:

• ⊥ and P (x1, . . . , xn) are atomic formulas, where P is a predicate letter
and xi are individual variables;
• the set of formulas is closed under the boolean connectives and quantifiers;
• if F is a formula, gn is a proof functional letter of arity n and x1, . . . , xn

are individual variables, then [[gn(x1, . . . , xn)]]F is a formula.

The set of free variable of a formula F is denoted by Free Var(F ), where

Free Var([[gn(x1, . . . , xn)]]F ) = Free Var(F ) ∪ {x1, . . . , xn}.

Remark 1. Note that proof functional letters of the language Lf are not function
symbols of a usual first order language in the standard meaning of the term. They
can appear in a formula only in the scope of [[·]]-part of the operational symbol
[[·]](·).
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2.3. Arithmetical interpretation. Let us describe the intended arithmetical
semantics for Lf . In what follows PA denotes Peano Arithmetic , TA stands for
”Truth Arithmetic”, that is, the set of arithmetical formulas which are true in the
standard model (natural numbers).

In order to represent recursive functions we consider Peano Arithmetic enriched
by recursive ι-terms. For every formula ϕ(x1, . . . , xn, y) such that

PA ` ϕ(x1, . . . , xn, y) ∧ ϕ(x1, . . . , xn, z)→ y = z,

the expression ιy.ϕ(x1, . . . , xn, y) is a ι-term of arity n. It is supposed to repre-
sent a (partial) function f(x1, . . . , xn) which assigns to x1, . . . , xn the unique y
such that ϕ(x1, . . . , xn, y). We use the expression ψ(ιy.ϕ(~x, y)) to abbreviate the
formula ∃y(ψ(y) ∧ ϕ(~x, y)).

Definition 2. A ι-term ιy.ϕ(~x, y) is called recursive if the formula ϕ is provably
Σ1 in PA. If PA ` ∀~x ∃y ϕ(~x, y), then the corresponding ι-term is called provably
total (the corresponding function represented by provably total ι-term is also called
provably total).

The following lemma says that all recursive functions can be represented as
recursive ι-terms; it is a reformulation of the theorem on arithmetical representation
of recursive functions.

Lemma 1. The following holds:
1. Every recursive ι-term represents a recursive function. And vice versa,

every recursive function can be represented by a recursive ι-term.
2. Every primitive recursive function can be represented by a provably total

recursive ι-term.

Example 1. By dϕ(ẏ1, . . . , ẏn)e we denote provably total recursive ι-term for
primitive recursive function λk1, . . . , kn.dϕ(k1, . . . , kn)e that being given any k1,
. . . , kn calculates the Gödel number of a formula ϕ(k1, . . . , kn).

Definition 3. Let T be a recursively enumerable arithmetical theory, PA ⊆ T ⊂
TA. A proof predicate for a theory T is a provably ∆1-formula Prf (x, y) which
enumerates theorems of T in PA, that is for any arithmetical sentence ϕ

T ` ϕ ⇐⇒ PA ` Prf (n, dϕe) for some n,

where dϕe stands for the Gödel number of a formula ϕ.

Example 2. Here are some examples of proof predicates. The standard Gödel
proof predicate for T is an arithmetical formula

Proof T (x, y)
 “x is a Gödel number of a derivation in T and y is the
Gödel number of the last formula in it”.

One can consider the multi-conclusion version of this predicate:

PROOFT (x, y)
 “x is a Gödel number of a derivation in T and y is
the Gödel number of some formula in it”.
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Here is another version of multi-conclusion proof predicate for T :

Prf T (x, y)
 “x is a Gödel number of a finite set of derivations in T
and y is the Gödel number of the last formulas in one
of them”.

Now we are ready to define an arithmetical interpretation of the language Lf .

Definition 4. An arithmetical interpretation ∗ = (Prf , ε) of the language Lf has
the following parameters:

• a proof predicate Prf for a recursively enumerable theory PA ⊆ T ⊂ TA;
• an evaluation ε, which assigns to proof functional letters provably recursive

arithmetical ι-terms of the same arity, and maps atomic formulas to arith-
metical formulas with the same free variables. We assume that ε commutes
with renaming of free variables.

Given an arithmetical interpretation ∗ one could translate all formulas of the
language Lf by arithmetical formulas in the following canonical way. For atomic
formulas Q∗ 
 εQ, ∗ commutes with boolean connectives and quantifiers, and

([[g(~x)]]A(~y))∗ 
 Prf (εg(~x), dA∗(~̇y)e).

2.4. First order logics of proofs. Let us give the definition of first order logic of
proofs. In what follows U stands for an arithmetical theory such that PA ⊆ U ⊆ TA.

Definition 5. Suppose that Prf is a proof predicate for a recursively enumerable
theory T , where PA ⊆ T ⊂ TA. We define two versions of the logic of proofs for the
predicate Prf :

QLPfPrf (U)
 {A ∈ Fm(Lf ) : for any interpretation ∗ = (Prf , ε) U ` A∗},

QLPcPrf (U)
 {A ∈ Fm(Lc) : for any interpretation ∗ = (Prf , ε) U ` A∗}.
For a given class of proof predicates K we define the corresponding logics of proofs
by

QLPfK(U)

⋂

Prf∈K

QLPfPrf (U),

QLPcK(U)

⋂

Prf∈K

QLPcPrf (U).

The logics QLPfK(U) and QLPcK(U) describe all universal properties of the pred-
icates Prf ∈ K that can be proved in U . We shall be interested mostly in the cases
U = PA and U = TA.

Remark 2. Propositional logics of proofs for PA and TA coincide (cf. [6]). How-
ever, this property does not hold in the predicate case even for the language with
proof constants. In order to show that QLPc(PA) 6= QLPc(TA) we consider weak
reflexivity principle [[t]]P (x)→ P (x). Obviously it is arithmetically valid and thus
belongs to QLPc(TA). But this principle cannot be proven in PA under the inter-
pretation ∗ = (Prf , ε), where εP 
 ¬Proof PA(x, d⊥e), εt = 1 and proof predicate
Prf (z, y) is defined by the formula

Proof PA(z, y) ∨ (z = 1 ∧ ∃x < y (y = d¬Proof PA(ẋ, d⊥e)e)).
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Actually, from the definition of Prf we immediately conclude that

PA ` Prf (1, dP ∗(ẋ)e).

Gödel’s second incompleteness theorem provides that PA 6` P ∗(x), a contradiction.

3. Lower complexity bounds for QLPfK(U)

In this section we show that the logic QLPfK(TA) is nonarithmetical and that
QLPfK(PA) is Π2-hard for any class of proof predicates K. We obtain these facts as
a corollary of a more general theorem which gives the lower complexity bounds for
all the logics QLPfK(U).

3.1. Preliminaries.

Definition 6. Arithmetical formula ϕ(x) is decidable in a theory U if for any
natural number n ∈ ω either U ` ϕ(n) or U ` ¬ϕ(n). If ϕ is decidable in U , then
the set of form {n : U ` ϕ(n)} is called decidable in U . A set belongs to the class
Πn in U (Σn in U) if it is of complexity Πn (Σn) with respect to a set decidable
in U .

Lemma 2 [19, 9]. Let the set P be Π2 in U . Then there exists a formula Q(y, z)
decidable in U such that

n ∈ P ⇐⇒ ∀x ∃y > x U ` Q(y, n).

We also need the following lemma which is a strengthened version of the well-
known Tennenbaum theorem. The theorem says that any model of Peano Arith-
metic in which addition and multiplication are recursive functions is isomorphic to
the standard model. The lemma says that the same fact holds for a finite fragment
of Peano Arithmetic.

Lemma 3 [1]. There exists a finite set Ten of theorems of Peano Arithmetic such
that every model of Ten with the domain ω in which + (addition) and × (multipli-
cation) are recursive functions is isomorphic to the standard model.

3.2. The main theorem.

Theorem 1. Suppose that U is any arithmetically correct theory and K is an
arbitrary nonempty class of proof predicates. Then any set, which is Π2 in U , is
m-reducible to QLPfK(U).

The proof of this theorem goes on the lines of proofs of similar facts for predicate
provability logics (cf. [1, 19, 8]).

Proof. Let P be Π2 in U . Lemma 2 provides us with a formula Q(y, z) decidable
in U such that for any n

n ∈ P ⇐⇒ ∀x ∃y > x U ` Q(y, n).

Let us describe an algorithm that performs the reduction of P to QLPfK(U).
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Description of the reduction algorithm. Consider the predicate language EAM
consisting of a binary predicate symbol E and two ternary predicate symbols A
and M . We apply the standard procedure of replacing function symbols by pred-
icate symbols to arithmetical language, where E, A, and M stand for equality,
addition, and multiplication predicates respectively. Let {ϕ} denote the result of
the described translation of an arithmetical formula ϕ into the language EAM .

Let T denote the conjunction of all formulas {ϕ} (ϕ ∈ Ten) and standard axioms
in the language EAM expressing basic properties of equality for the predicate E
and functionality of the predicates A and M . Put

Eq 
 ∀x, y [E(x, y)→ (W (x)↔W (y)) ].

Suppose thatW (x) is a unary predicate symbol and p(x, y, z), q(x, y, z), r(x, y),
t(x) are proof functional letters of the indicated arity. We define a formula that
expresses decidability of E, A, M , and W in the following way:

D 
 ∀x, y, z [ (A(x, y, z)↔ [[p(x, y, z)]]A(x, y, z))

∧ (M(x, y, z)↔ [[q(x, y, z)]]M(x, y, z))

∧ (E(x, y)↔ [[r(x, y)]]E(x, y))

∧ (W (x)↔ [[t(x)]]W (x)) ].

Let S(x, y) be a natural arithmetical Σ1-formula expressing the relation “Turing
machine having number x terminates on input y”. Now we can describe the desired
algorithm. For any n ∈ ω it produces the formula

Φn 
 T ∧D ∧ Eq → ∃x ∃y (x{<}y ∧ {Q}(y, n)) ∧ ∀z (W (z)↔ {S}(x, z)). (1)

Let us show that a (recursive) function n 7→ Φn performs the reduction of P to
QLPfK(U). It suffices to establish that

∀x ∃y > x U ` Q(y, n) ⇐⇒ ∀Prf ∈ K ∀∗ = (Prf , ε) U ` Φ∗n. (2)

Proof of (⇒). Suppose ∀x ∃y > x U ` Q(y, n). Let Prf be an arbitrary proof
predicate from K and ε an arbitrary evaluation. Consider the interpretation ∗ =
(Prf , ε). Let us prove that U ` Φ∗n.

Step 1. Since Prf is provably decidable and since arithmetical terms assigned to
functional variables are provably total, we conclude that for any evaluation ε

PA ` D∗ → “εE, εA, εM , and εW are decidable”. (3)

For example, the decision algorithm for εA for given x, y, and z calculates the value
of εp(x, y, z) and then checks whether Prf (εp(x, y, z), dεA(ẋ, ẏ, ż)e) holds. The
formula D∗ guarantees that εA(x, y, z) is true if the answer is positive and false
otherwise. Decision algorithms for the remaining predicates work similarly.

Step 2. Arithmetical formula R(x, y) defined below expresses the relation “ y rep-
resents a number x in the model defined by the arithmetical interpretation ∗”

R(x, y)
 “there exists a finite sequence s of length x+ 1,
such that (s)0 = 0∗, (s)x = y, and ∀z < x A∗(1∗, (s)z, (s)z+1)”,
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where constants 0∗ and 1∗ are defined in terms of A∗ and M∗ in the standard
manner:

(x = 0∗)
 A∗(x, x, x), (x = 1∗)
M∗(x, x, x) ∧ ¬A∗(x, x, x).

The following properties of R(x, y) are established in [19, 9].
(R1) U ` T ∗ ∧R(z, z1) ∧R(z, z2)→ E∗(z1, z2);
(R2) U ` T ∗ → ∀a ∃b R(a, b);
(R3) (formalized Tennenbaum theorem)

U ` T ∗ ∧ “εE, εA, and εM are decidable”→ ∀y ∃x R(x, y).

Step 3. We can show by induction on formula ϕ(~x) that

U ` T ∗ ∧ ∀b ∃a R(a, b) ∧R(~x, ~y)→ (ϕ(~x)↔ {ϕ}∗(~y)),

where ~x = (x1, . . . , xm) denotes the set of all free variables of a formula ϕ and
R(~x, ~y) is an abbreviation for

∧m
i=1R(xi, yi). Hence from (3) and (R3) it follows

that
U ` T ∗ ∧D∗ ∧R(~x, ~y)→ (ϕ(~x)↔ {ϕ}∗(~y)). (4)

Step 4. There exists a natural number k such that

U ` D∗ → [∃z (R(v, z) ∧W ∗(z))↔ S(k, v) ]. (5)

Actually, according to (3) from D∗ it follows that the relations A∗, M∗ and E∗

are decidable. In view of the definition, R(v, z) is recursively enumerable. Since
relation W ∗(z) is recursive by (3), the set {v : ∃z (R(v, z)∧W ∗(z))} is enumerable
too. This provides us with the desired k.

Step 5. Let us show that

U ` T ∗ ∧D∗ ∧ Eq∗ ∧R(v, z)→ (W ∗(z)↔ S(k, v)). (6)

We reason in U . In view of T ∗ ∧ D∗ ∧ Eq∗ and (5), from W ∗(z) we immedi-
ately obtain S(k, v). For the converse assume that S(k, v). From (5) we get
∃z1 (R(v, z1)∧W ∗(z1)). According to (R1), R(v, z) and R(v, z1) imply E∗(z, z1).
In view of Eq∗, we conclude that W ∗(z1)↔W ∗(z), whence W ∗(z).

Step 6. According to our original assumption (see (2)), there exists a number l
such that k < l and U ` Q(l, n). Then U ` k < l ∧Q(l, n). Using (4) we derive

U ` T ∗ ∧D∗ ∧R(k, x) ∧R(l, y)→ x{<}y ∧ {Q}∗(y, n). (7)

Step 7. Reason in U . From (6) and (4) it follows that

T ∗ ∧D∗ ∧ Eq∗ ∧R(k, x) ∧R(v, z)→ (W ∗(z)↔ {S}∗(x, z)).
Applying (R3), (7), (R2) and doing standard manipulations in predicate calculus
we conclude the desired

T ∗ ∧D∗ ∧ Eq∗ → ∃x ∃y [x{<}y ∧ {Q}∗(y, n) ∧ ∀z (W ∗(z)↔ {S}∗(x, z)) ]. �

Proof of (⇐). Suppose that U ` Φ∗n under every arithmetical interpretation ∗ =
(Prf , ε), where Prf ∈ K. Let us show that ∀m ∃l > m U ` Q(m, n).
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Step 1. Let ε denote the standard arithmetical evaluation of the language EAM
which assigns the equality, addition, and multiplication predicates to the predicate
letters E, A, and M respectively:

εE 
 (x = y),

εA 
 (x+ y = z),

εM 
 (xy = z).
(8)

Step 2. We fix a proof predicate Prf ∈ K and an arbitrary m ∈ ω and consider
the evaluations εk (k = 1, . . . , m) which are extensions of ε defined as follows:

εkW 
 (z = k),

εkr 
 µw.Prf (w, dẋ = ẏe) ∧ (x = y),

εkp 
 µw.Prf (w, dẋ+ ẏ = że) ∧ (x+ y = z),

εkq 
 µw.Prf (w, dẋẏ = że) ∧ (xy = z),

εkt 
 µw.Prf (w, dk = ke) ∧ (z = k).

(9)

For any k = 0, . . . , m consider the interpretation ∗k = (Prf , εk).

Step 3. It can be easily seen that U ` T ∗k ∧ D∗k ∧ Eq∗k . Since U ` Φ∗kn for all
k = 0, . . . , m, we have

U ` ∃x ∃y [x < y ∧Q(y, n) ∧ ∀z ((z = k)↔ S(x, z)) ].

Therefore

U ` ∃x ∃y [x < y ∧Q(y, n) ∧
m∧
i=0

((i = k)↔ S(x, i)) ]. (10)

Step 4. For any k = 0, . . . , m consider the number xk satisfying (10). Let us show
that xk > m for some k. Suppose that xk < m for all k = 0, . . . , m. Applying the
pigeonhole principle, we obtain xk1 = xk2 for some k1 6= k2. For interpretations ∗k1

and ∗k2 consider the conjunct corresponding to i = k1 in formula (10). We obtain
respectively that

U ` (k1 = k1)→ S(xk1 , k1) and (k1 = k2)↔ S(xk2 , k1) is true.

From U ` k1 = k1 it follows that U ` S(xk1 , k1). Since xk1 = xk2 we can derive
U ` S(xk2 , k1). Therefore formula k1 = k2 with k1 6= k2 is true in the standard
model.

The contradiction obtained shows that xk ≥ m for some k = 0, . . . , m. In
accordance with (10), there exists a natural number l > xk such that Q(l, n) holds.
Since Q is decidable in U we conclude that U ` Q(l, n). Then we have l > m and
U ` Q(l, n). �

3.3. Corollaries.

Corollary 1. Suppose that Prf is a proof predicate. Then any set that is Π2 in U

is m-reducible to QLPfPrf (U).

Corollary 2. For every proof predicate Prf the set QLPfPrf (TA) is not arithmetical.
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Proof. Note that all arithmetical sets are decidable in TA. According to Theorem 1,
all these sets can be reduced toQLPfPrf (TA). ThusQLPfPrf (TA) is nonarithmetical.

�

Remark 3. It is immediate from the definition that the logicQLPfPrf (TA) belongs to
the complexity class Π0

1(TA). According to Corollary 2, this logic is nonarithmetical.
This result can be strengthened using a method from [8]. Namely, it can be shown
that QLPfPrf (TA) is Π0

1(TA)-complete.

Corollary 3. For each proof predicate Prf the set QLPfPrf (PA) is Π2-complete.

Proof. From the definitions, one can easily see that QLPfPrf (PA) belongs to Π2. On
the other hand, all recursive relations are decidable in PA, whence, by Theorem 1,
any Π2-set can be reduced to QLPfPrf (PA). �

4. First order logics with constants on proofs

In this section we find lower complexity bounds for first order logics of proofs
formulated in the language with constants on proofs Lc. We consider two cases:

(1) the class of all proof predicates and the class of all proof predicates for a
given recursively enumerable theory PA ⊆ T ⊆ TA;

(2) any class consisting of normal multi-conclusion proof predicates, that is,
proof predicates which imitate real proof processes (for the precise definition
see page 486);

4.1. Logic of all proof predicates. The logic of all proof predicates formulated
in the language Lc is denoted by QLPc(U). Let T be any recursively enumerable
arithmetical theory, PA ⊆ T ⊂ TA. The logic of all proof predicates for T is denoted
by QLPcT (U).

Theorem 2. For every arithmetical theory U such that PA ⊆ U ⊆ TA,
1) any set which is Π2 in U is m-reducible to QLPc(U);
2) any set which is Π2 in U is m-reducible to QLPcT (U).

Proof. The proof of both 1) and 2) is a slight modification of the proof of Theorem 1.
We describe changes needed for 2). Let P be any set which is Π2 in U . The
algorithm performing a reduction of P to QLPcT (U) to every natural number n ∈ ω
assigns the following formula Φn defined similarly to (1)

Φn 
 T ∧D ∧ Eq → ∃x ∃y (x{<}y ∧ {Q}(y, n) ∧ ∀z (W (z)↔ {S}(x, z))
with the only difference in formula D in which we have to replace proof functional
symbols by proof constants. Now D is defined as follows

D 
 ∀x, y, z [ (A(x, y, z)↔ [[p]]A(x, y, z))

∧ (M(x, y, z)↔ [[q]]M(x, y, z))

∧ (E(x, y)↔ [[r]]E(x, y))

∧ (W (x)↔ [[t]]W (x)) ],

where p, q, r, and t are proof constants.
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It remains to show that recursive function n 7→ Φn performs a reduction of P to
QLPcT (U), that is

∀x ∃y > x U ` Q(y, n) ⇐⇒ ∀∗ = (Prf T , ε) U ` Φ∗n. (11)

A detailed analysis of the proof of Theorem 1 shows that the proof of the left-
to-right implication does not change. To establish the converse, in the proof of
Theorem 1 we considered an interpretation of a special form (see (8) and (9)).
Here we do the same thing, but we need to define a specific proof predicate on
which this interpretation is based. An appropriate proof predicate can be defined
by the formula

Prf T (x, y)
 Proof T (x, y)

∨ x = 1 ∧ ∃a, b, c < y (a+ b = c ∧ y = dȧ+ ḃ = ċe)

∨ x = 2 ∧ ∃a, b, c < y (a× b = c ∧ y = dȧ× ḃ = ċe)

∨ x = 3 ∧ ∃a, b < y (a = b ∧ y = dȧ = ḃe) (12)

where Proof T (x, y) denotes the standard Gödel proof predicate for T . Consider
evaluations εk (k = 1, . . . , m) extending the standard evaluation ε from (8) as
follows:

εkW 
 (z = k),
εkr 
 1, εkp
 2, εkq 
 3,

εkt 
 µw.Prf T (w, dk = ke) ∧ (z = k).

The remaining part of the proof does not change. �

Corollary 4. The logics QLPcT (TA), QLPc(TA) are nonarithmetical. (In fact, the
last one is Π0

1(TA)-complete). The logics QLPcT (PA), QLPc(PA) are Π2-complete.

Remark 4. In the proof of theorem 2 the essential point was to construct a proof
predicate such that all true formulas of the form x + y = z, xy = z and x = y
had a common proof. Therefore, this theorem remains true for all classes of proof
predicates K which contain at least one proof predicate of this sort. In case K
contains only proof predicates that imitate real computation processes and does not
include predicates of the sort (12) we can prove somewhat weaker results (below)
which however suffice to rule out recursive axiomatizability of those logics.

4.2. First order logic of normal proof predicates.

Definition 7. A proof predicate Prf is called normal if for every n ∈ ω the set
Th(n) = {x : Prf (n, x)} is finite and the function

n 7→ the Gödel number of Th(n)

is recursive provably total.
A proof predicate Prf T for T is normal multi-conclusion if any finite set M

of theorems of T has a common proof, namely, there exists n such that for every
ϕ ∈M we have Prf T (n, dϕe).
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Remark 5. If a proof predicate Prf (x, y) is normal, then PA ` “k proves a finite
set of theorems” for every k ∈ ω, that is, there exists n ∈ ω such that

PA ` ∀y (Prf (k, y)→ y < n).

We show that for every class N of normal multi-conclusion proof predicates the
corresponding logic QLPcN (U) is Π1-hard.

Let Lfin denote the predicate logic of finite models, that is, the set of predicate
formulas that are true in all finite models. It is well-known that Lfin is Π1-complete.
We reduce Lfin to QLPcN (U). First we have to prove a kind of arithmetical com-
pleteness result for Lfin , namely, that Lfin is complete with respect to the class
of arithmetical interpretations of the predicate language by formulas that define
provably finite or cofinite relations.

Definition 8. Let ϕ(x1, . . . , xn) be an arbitrary arithmetical formula with all free
variables shown. We define the following formulas:

Finϕ(y)
 ∀x1 . . . xn (ϕ(x1, . . . , xn)→
n∧
i=1

xi ≤ y),

Stϕ(y)
 Finϕ(y) ∨ Fin¬ϕ(y).

Formula ϕ is called provably finite (provably stable) if ϕ is a ∆1-formula and PA `
Finϕ(k) (PA ` Stϕ(k) resp.) for some k ∈ ω.

Let Fin and Stab denote the classes of all interpretations of the pure predicate
language by provably finite and provably stable formulas respectively.

Theorem 3. Let U be any arithmetical theory, PA ⊆ U ⊆ TA. Then for every
predicate formula F

F ∈ Lfin ⇐⇒ ∀α ∈ Fin U ` αF ⇐⇒ ∀α ∈ Stab U ` αF.

Proof. To prove this theorem it suffices to show that
(1) if F 6∈ Lfin , then ∃α ∈ Fin TA 6` αF ;
(2) if F ∈ Lfin , then ∀α ∈ Stab PA ` αF .

The first proposition is obvious. Let us prove the second one.

Step 1. For every formula ϕ the following formulas are provable in PA:
(1) Stϕ(y) ∧ y < z → Stϕ(z);
(2) Stϕ(y) ∧ Stψ(y)→ Stϕ∧ψ(y) ∧ Stϕ∨ψ(y) ∧ St¬ϕ(y);
(3) Stϕ(y)→ St∃z ϕ(y);
(4) Stϕ(y)→ (∃zϕ↔ ∃z ≤ (y + 1) ϕ).

Items 1, 2 and 3 are trivial, 4 follows immediately from 3.

Step 2. For every predicate formula F and interpretation α ∈ Stab,
(1) there exists k ∈ ω such that PA ` StαF (k);
(2) αF ∈ ∆1.

We prove both facts by joint induction on formula F . Induction base when F is an
atomic formula holds by the definition of a stable interpretation.
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Induction step. Suppose that F = F1 ∧ F2. Item 2 holds since the class of
∆1-formulas is closed under boolean connectives. Let us prove 1. By the induction
hypothesis, there exist k1, k2, such that PA ` StαFi(ki) for i = 1, 2. Put k =
max(k1, k2). From Step 1, (1) and (2), we consequently obtain PA ` StαF1(k) ∧
StαF2(k) and PA ` Stα(F1∧F2)(k). The remaining boolean connectives are treated
in a similar way.

Suppose that F = ∃zG(z, ~x). From the induction hypothesis it follows that αG ∈
∆1 and there exists k ∈ ω such that PA ` StαG(k). Step 1 (3) yields assertion 1.
From Step 1 (4) we obtain that PA ` ∃z αG(z, ~x) ↔ ∃z ≤ (k + 1) αG(z, ~x).
Since the class of ∆1-formulas is closed under bounded quantifiers, we conclude
that αF ∈ ∆1.

Step 3. Suppose that F ∈ Lfin and α ∈ Stab. From the definition it immediately
follows that TA ` αF . By Step 2, αF ∈ ∆1. Therefore PA ` αF . �

Theorem 4. Let N be any class of normal multi-conclusion proof predicates. Then
both logics QLPcN (PA) and QLPcN (TA) are Π1-hard and Σ1-hard.

Proof. Both logicsQLPcN (PA) andQLPcN (TA) are Σ1-hard since they are conserva-
tive over the predicate calculus PC which is known to be Σ1-complete. To establish
Π1-hardness we reduce the logic of finite models Lfin (which is Π1-complete) to both
systems. Consider the interpretation red of the predicate language in the language
Lc defined in the following way. For every predicate symbol Pi put

red Pi(~x)
 [[qi]]Pi(~x).

We prove that function red performs the reduction of Lfin to QLPcN (PA) and
QLPcN (TA), that is

F ∈ Lfin ⇐⇒ red F ∈ QLPcN (PA) ⇐⇒ red F ∈ QLPcN (TA). (13)

Step 1. Suppose that F ∈ Lfin and ∗ = (Prf , ε) is an arbitrary arithmetical
interpretation of the language Lc with Prf ∈ N . We define interpretation α of the
pure predicate language such that for every predicate symbol Pi

αPi(~x)
 (red Pi(~x))∗.

Then αF = (red F )∗ for any predicate formula F . Since the predicate Prf is
normal, the interpretation α is provably stable. Thus by theorem 3 we have that
PA ` αF , whence PA ` (red F )∗.

Step 2. Suppose that F 6∈ Lfin . Then there exists an interpretation of the pure
predicate language α ∈ Fin such that αF 6∈ TA. We construct an interpretation ∗
of the language Lc such that red F ∗ 6∈ TA.

Let us fix a proof predicate Prf T ∈ N . Let P1, . . .Pn be the list of all predicate
symbols occurring in F . Let Mi be a set consisting of all true formulas of the form
αPi(~k). Since αPi is a provably finite ∆1-formula, there exists a number ni such
that Prf T (ni, ϕ) holds for every ϕ ∈Mi. It is also clear that

PA ` αPi(~x)↔ Prf T (ni, dαPi(~̇x)e). (14)
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Consider the interpretation ∗ = (Prf T , ε), where ε coincides with α on predicate
letters and ε(qi) = ni. In view of (14), by induction on formula D we can show
that PA ` αD ↔ (red D)∗. Since αF 6∈ TA, we conclude (red F )∗ 6∈ TA. �

5. Discussion

Though finding a complete axiom system to the first order logic of proofs turned
out to be impossible, a more modest goal of finding an exact explicit companion of
major first order modal logics, e. g. S4 looks attractive. There are several possible
motivations to this problem. In particular, the explicit version of the first order
S4 is a step toward finding the BHK semantics for the first order intuitionistic
logic, since the Gödel correspondence between intuitioinistic and modal logics can
be extended to the first order systems (cf. [10, 18]).

Another natural problem here might be to find an axiomatization of the fragment
of the logic of proofs with one individual variable only. The corresponding fragment
of the first order provability logic has been shown decidable in [5].
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