
Back to the Future: Explicit Logic for Computer

Science

Sergei Artemov∗

We will speak about three traditions in Logic:
• Classical, usually associated with Frege, Hilbert, Gödel, Tarski, and others;
• Intuitionistic, founded by Brouwer, Heyting, Kolmogorov, Gödel, Kleene,

and others;
• Explicit, which we trace back to Skolem, Curry, Gödel, Church, and others.
The classical tradition in logic based on quantifiers ∀ and ∃ essentially re-

flected the 19th century mathematician’s way of representing dependencies be-
tween entities. A sentence ∀x∃yA(x, y), though specifying a certain relation
between x and y, did not mean that the latter is a function of the former, let
alone a computable one. The Intuitionistic approach provided a principal shift
toward the effective functional reading of the mathematician’s quantifiers. A
new, nonTarskian semantics had been suggested by Kleene: realizability that
revealed a computational content of logical derivations. In a decent intuitionstic
system, a proof of ∀x∃yA(x, y) yields a program f that computes y = f(x).

Explicit tradition makes the ultimate step by using representative systems
of functions instead of quantifiers from the very beginning. Since the work of
Skolem, 1920, it has been known that the classical logic can be adequately recast
in this way. Church in 1936 showed that even the very basic system of function
definition and function application is capable of emulating any computable pro-
cedure. However, despite this impressive start, the explicit tradition remained
a Cinderella of the mathematical logic for decades. Now things have changed:
due to its very explicitness, this third tradition became the one most closely
connected with Computer Science.

In this talk we will show how switching from quantifiers to explicit functional
language helps problem solving in both theoretical logic and its applications. A
discovery of a natural system of self-referential proof terms, proof polynomials,
was essential in the solution to an open problem of Gödel concerning formaliza-
tion of provability. Proof polynomials considerably extend the Curry-Howard
isomorphism and lead to a joint calculus of propositions and proofs which unifies
several previously unrelated areas. It changes our conception of the appropriate
syntax and semantics for reasoning about knowledge, functional programming
languages, formalized deduction and verification.

∗The Graduate Center of the City University of New York, 365 Fifth Avenue, New York,

NY, 10016, U.S.A. sartemov@gc.cuny.edu; Moscow University

1


