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Abstra
t. We show that the stability requirement for a veri�
ation sys-

tem yields the ne
essity of some sort of a re
e
tion me
hanism. However,

the traditional re
e
tion rule based on the G�odel impli
it provability

predi
ate leads to a \re
e
tion tower" of theories whi
h 
annot be for-

mally veri�ed. We found natural lower and upper bounds on a metathe-

ory 
apable of establishing stability of a given veri�
ation system.

The paper introdu
es an expli
it re
e
tion me
hanism whi
h 
an be veri-

�ed internally. This 
ir
umvents the re
e
tion tower and provides a stri
t

justi�
ation for the veri�
ation pro
ess. On the pra
ti
al side, the paper

gives spe
i�
 re
ommendations 
on
erning the veri�
ation of inferen
e

rules and building a veri�able re
e
tion me
hanism for a theorem prov-

ing system.

1 Introdu
tion

There is a large variety of theorem provers and proof 
he
kers whi
h 
an be used

for veri�
ation (
f. [8℄, [1℄, [11℄). The mathemati
al 
ounterparts of those systems

range from �rst order logi
 (e.g. in FOL) and 
ertain fragments of �rst order

arithmeti
 to higher order logi
 (HOL), the systems with powerful prin
iples

suÆ
ient to a

ommodate most of the 
lassi
al mathemati
s (Mizar) and most

of the 
omputational and 
onstru
tive tools (Nuprl). The underlying logi
 of

su
h systems 
an be either 
lassi
al or intuitionisti
. In this paper we assume

that

The degree of 
on�den
e in fa
ts veri�ed by a 
ertain system is not higher

than the degree of 
on�den
e in the system itself.

This paradigm yields the ne
essity to keep an a

ount of the tools used in a

given veri�
ation pro
ess, in
luding the veri�
ation system V itself along with

?
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an exa
t des
ription of the set of all metamathemati
al assumptions M made

in the pro
ess of veri�
ation. Therefore, the set of beliefs whi
h the veri�
ation

is based upon should in
lude V [M. Without loss of generality we assume in

this paper that a metatheory M of a given veri�
ation system V 
ontains V ,

therefore, V [M =M.

For example, suppose we want to verify a statement F by means of the

�rst order arithmeti
 PA (i.e. V = PA). One of the possible ways to

put this problem on a formal setting is to say that our goal 
onsists in

establishing that PA ` Provable(F ), where Provable(F ) is a formal state-

ment saying that \F is provable by 
ertain formal tools". Suppose that

we have established that ZF ` Provable(F ), where ZF is the Zermelo-

Frenkel set theory (a mu
h stronger theory than PA). This 
orresponds

to a realisti
 situation when a veri�er uses the power of all of mathe-

mati
s, not only the elementary methods formalizable in PA. Here is the

sket
h of the standard metamathemati
al argument whi
h under 
ertain

assumptions about ZF 
on
ludes that in fa
t PA ` Provable(F ): assume

that ZF is !-
onsistent (
f. [15℄,[7℄,[16℄); sin
e Provable(F ) is an arith-

meti
al �

1

statement, this yields that Provable(F ) is true and, by the

�

1

-
ompleteness of PA, PA ` Provable(F ). On the one hand, we have

su

eeded in establishing that PA ` Provable(F ). On the other hand,

at the metalevel of this argument we have used the power of ZF and

even the assumption of !-
onsisten
y of ZF . A total a

ount of the be-

liefs involved in this veri�
ation pro
ess should in
lude this assumption,

whi
h, by the way, has never been and 
ould not possibly be proven by

any usual 
onsistent mathemati
al means.

In this paper we will try to demonstrate the following three points:

1. Some form of the re
e
tion rule is a ne
essary part of an extendable and

stable veri�
ation system. This will emerge as a natural 
orollary of the sound-

ness, extensibility, and stability assumptions (
f. [8℄) about a veri�
ation system.

Moreover, even the most basi
 proof 
he
king s
heme when V veri�es a proof of

F and then 
on
ludes that F itself holds requires re
e
tion.

2. The traditional re
e
tion based on the impli
it provability predi
ate does

not provide a satisfa
tory justi�
ation of formal veri�
ation. It is well-known

that the impli
it re
e
tion in a given system V 
annot be veri�ed in V (
f. [8℄,

[12℄, [1℄, [11℄). In parti
ular, this means that impli
it re
e
tion 
annot justify even

the basi
 proof 
he
king by means of V without imposing additional unveri�able

assumptions on V . The present paper demonstrates that an iterative use of

re
e
tion leads to the \re
e
tion tower" of impli
it re
e
tion rules whi
h is not


omputably enumerable and 
annot be itself veri�ed by any formal tools. If one

takes into a

ount these hidden metamathemati
al 
osts of impli
it re
e
tion,

then no veri�able stable systems exist.

3. There is a veri�able re
e
tion me
hanism: \expli
it re
e
tion" (introdu
ed

in the present paper), whi
h provides a foundational justi�
ation of the veri�
a-

tion pro
ess. Expli
it re
e
tion requires more information in order to 
ertify the



premises of the re
e
tion rule. However, this additional information is usually

available in real pro
esses of veri�
ation; the old impli
it provability model just

has not had a tool of its utilization. The expli
it re
e
tion 
ir
umvents the re
e
-

tion tower and provides the stri
t justi�
ation of veri�
ation. On the pra
ti
al

side, the paper gives spe
i�
 re
ommendations 
on
erning the veri�
ation of the

admissible rules and building a veri�able re
e
tion me
hanism for a theorem

proving system.

2 Veri�
ation Systems

De�nition 1. Under a veri�
ation system V we will understand a formal

theory satisfying the following 
onditions a) { d):

a) The underlying logi
 of V is either 
lassi
al or intuitionisti
.

b) Proofhood in V is de
idable, therefore theoremhood in V is 
omputably

enumerable. Note that by the well-known Craig Theorem the former follows from

the latter for an appropriate 
hoi
e of axiom system.


) V is strong enough to represent any 
omputable fun
tion and de
idable

relation.

d) V has some sort of a numeration of syntax me
hanism in the style of [8℄,

[1℄. In parti
ular, there is an inje
tive fun
tion rep whi
h maps synta
ti
 obje
ts

like terms, formulas, �nite sequen
es of formulas, sequents, �nite trees labeled

by sequents, derivation trees, et
., into standard ground terms of V. The usual

notation used in this 
ase is psq = rep(s). The fun
tion rep and its inverse are

both 
omputable. We assume that V is able to derive formalizations of \usual"


ombinatory properties of the synta
ti
 obje
ts at a level 
orresponding to the

�rst order intuitionisti
 arithmeti
 HA.

For the sake of notational simpli
ity we will use the same names for the

informal obje
ts (relations, fun
tions, numbers) and for their formal 
ounterparts

(formulas, terms, ground terms) whenever unambiguous.

Examples of veri�
ation systems: the �rst order arithmeti
 PA; the �rst

order intuitionisti
 arithmeti
 HA and its extensions; se
ond order arithmeti
;

Martin-L�of type theory ITT ; formal set theory ZF ; et
. Note that all the above


onditions on V have a purely 
onstru
tive synta
ti
 
hara
ter. We have assumed

neither semanti
 properties of V (e.g. soundness with respe
t to some semanti
s),

nor metamathemati
al ones (
onsisten
y, !-
onsisten
y, et
.).

De�nition 2. For any veri�
ation system V there is a provably �

1

formula

Proof (x; y) in the language of V (
alled a proof predi
ate) whi
h is obtained

by a natural formalization of the indu
tive de�nition of derivation in V (
f.

[9℄, [8℄, [1℄). In parti
ular, Proof (pDq; p'q) holds i� D is a proof of ' in V.

The G�odel provability predi
ate Provable(y) is de�ned as 9xProof (x; y). We

will use the notation �' for Provable(p'q) and [[p℄℄' for Proof (p; p'q). For any

�nite set of V-formulas � by �� we mean the 
onjun
tion of � 's for all  2 � .

De�nition 3. The 
onsisten
y formula Consis(V) is de�ned as :�?, where ?

is the standard boolean 
onstant FALSE in V.



The informal meaning of Consis(V) is that there is no a proof of FALSE in V :

this is one of the equivalent formulations of the 
onsisten
y assertion of V in the

language of V .

We will refer to the provability predi
ate �(�) as the impli
it provability

predi
ate. The reason for 
hoosing this name lies in the fa
t that in the formula

�' (i.e. 9xProof (x; p'q)) the proof is represented impli
itly by the existential

quanti�er, whi
h does not provide any spe
i�
ation of this proof.

The impli
it provability predi
ate has been studied extensively sin
e its in-

vention by G�odel in 1930. The milestone results here are the se
ond G�odel in-


ompleteness theorem (
f. [15℄, [7℄)), whi
h states that

If V is 
onsistent, then 6` Consis(V);

and the L�ob theorem whi
h says that

V ` �'!' implies V ` ':

By the well-known Hilbert-Bernays lemma (
f. [15℄,[7℄),

V ` ' implies V ` �':

This lemma 
an be 
onsidered as a justi�
ation of the formalization rule '=�'

for V , whi
h states that every proof in V 
an be formalized in V . The proof of the

formalization rule is purely synta
ti
 and does not involve any extra assumptions

about V . Moreover, this rule 
an be formalized and proven inside V (
f. [15℄, [7℄):

V ` �'! ��':

Below we will use one more fa
t about the provability operator �, usually at-

tributed to Hilbert, Bernays and L�ob (
f.[15℄,[7℄):

V ` �('! )! (�'!� ):

3 Stability Equals Admissibility of Re
e
tion Rule

The basi
 properties required from a veri�
ation system are soundness, exten-

sibility, and stability ([8℄). We will dis
uss soundness in Se
tion 4. Extensibility

and stability will appear in this se
tion below.

De�nition 4. A rule of inferen
e R in the language of V is a 
omputable par-

tial fun
tion from a de
idable set of lists of V-formulas to the set of V-formulas.

The usual notation for a rule of inferen
e R is �=', where � indi
ates the

argument of R (premises), and ' the value R(� ) of R (
on
lusion). For the

sake of notational 
onvenien
e we will not distinguish between a �nite list of

formulas � and one formula whi
h is the 
onjun
tion of all formulas from �

when unambiguous. We would like to think that su
h an abuse of notation will

be tolerated by a reader.



De�nition 5. A rule of inferen
e �=' in V is derivable if for any instan
e of

�=' there is a dedu
tion in V of its 
on
lusion from its premises.

A rule of inferen
e �=' in V is provable if V ` � ! '.

A rule of inferen
e �=' in V is admissible if V ` � implies V ` '.

Derivable rules is a system with the dedu
tion theorem are provable. It is

also natural to assume that every provable rule is derivable sin
e there is a

standard dedu
tion of ' from � (free premises) and � ! ' (has a derivation

without premises in V .). To a 
ertain extend the notion of provable rule is a

system-independent version of the notion of derivable rule.

It is immediate from the de�nitions that every provable rule of inferen
e

is admissible. None of the 
onverse impli
ations holds in a general 
ase. It is

important to noti
e that there are serious reasons to assume that derivable and

provable rules alone are not suÆ
ient for an advan
ed system of automated

dedu
tion and veri�
ation (
f. also [14℄).

Example 1. Here are examples of widely used admissible rules that are not prov-

able: '=8x' (generalization), '(x)='(y) (renaming of free variables) ::�=�,

where � is a �

1

senten
e (Markov rule for intuitionisti
 arithmeti
 HA, 
f. [17℄),

disjun
tive and existential rules for intuitionisti
 systems, '=�' (formalization),

�'!'=' (L�ob rule), �'=' (impli
it re
e
tion, for 
lassi
al and intuitionisti


arithmeti
), et
.

Extending V by adding rules provable in V does not 
hange the system. In

turn, stability of V with respe
t to admissible rules rises to a serious theoreti
al

and pra
ti
al problem sin
e some of the admissible rules 
annot be veri�ed inside

V .

De�nition 6. A rule of inferen
e �=' in V is veri�able in M if M ` �� !

�'. A rule in V is internally veri�able if it is veri�able in V.

Every admissible rule in V is veri�able in some suÆ
iently large theory M, but

not every one of them is veri�able in V .

Example 2. The rules generalization, renaming of free variables, formalization,

L�ob rule and internally veri�able. The rules impli
it re
e
tion, Markov rule,

disjun
tive rule, existential rule are not internally veri�able.

We a

ept the understanding of stability as 
onservativity of extensions by

internally veri�able rules (
f. [1℄, [8℄, [11℄, [14℄).

De�nition 7. System V

0

� V is 
onservative over V if for any formula  

V

0

`  implies V `  :

A system V is stable if for any rule �=' veri�able in V the system V + �=' is


onservative over V.

De�nition 8. By IRR(V) we denote the impli
it re
e
tion rule �'=' where

�' represents the provability of ' in V.



Example 3. Here is the standard example of a formal theory for whi
h the im-

pli
it re
e
tion rule is not admissible ([9℄): V = PA +:Consis(PA). This system

is 
onsistent, i.e. V 6` ?. On the other hand V ` �?, where � stands for prov-

ability in this parti
ular V .

Theorem 1. A veri�
ation system V is stable i� the impli
it re
e
tion rule

IRR(V) is admissible in V.

Proof. Let V be a stable system. Let us 
onsider the rule R

'


onsisting of a single

pair (TRUE; '), where TRUE is the propositional 
onstant for true statements

in V . Sin
e V ` TRUE, we also have V ` �(TRUE). By stability of V , for all

';  if V ` �(TRUE)!�' and V + TRUE=' `  , then V `  . Equivalently,

for all ';  if V ` �' and V + ' `  , then V `  . Let  be '. Then V ` �'

implies V `  for all ', therefore IRR(V) is admissible in V .

Let now IRR(V) be admissible in V , i.e. V ` �' implies V ` ', and let �='

be a veri�ed rule, i.e. V ` �� ! �'. By an indu
tion on the derivation in

V + �=' we prove that V + �=' `  implies V `  . The indu
tion basis holds

be
ause V and V + �=' have the same set of axioms. The indu
tion step in the


ase of a rule other than �=' is trivial. Let  be obtained in V+�=' by the rule

�=', i.e. there is spe
i�
 �

1

su
h that �

1

= is a spe
ial 
ase of the rule �=' and

V + �=' ` �

1

. By the indu
tion hypothesis, V ` �

1

. By the formalization rule

in V , V ` ��

1

. Sin
e the rule �=' is veri�ed, we have V ` ��

1

!� , therefore

V ` � . By the rule IRR(V), V `  .

Note 1. Su
h systems as LCF, Nuprl, HOL have the extension me
hanisms

of ta
ti
s based on the representation of provable rules. This use of ta
ti
s 
an

be justi�ed inside the system and the stability with respe
t to ta
ti
s 
an be

established without any additional assumptions. A general 
ase of stability with

respe
t to all veri�ed rules (in
luding the ones that are not provable) was 
onsid-

ered in [1℄, [8℄, [11℄, [14℄. It follows from Theorem 1 that the general stability of a

given veri�
ation system V is equivalent to admissibility of the impli
it re
e
tion

rule in V .

4 Provability Tests and other Sour
es of Re
e
tion

Stability of a veri�
ation system with respe
t to veri�able rules is not the

only pla
e where re
e
tion rule be
omes ne
essary.

The basi
 proof 
he
king s
heme when V veri�es a proof of ' in V

1

and

then 
on
ludes that V

1

` ' requires some sort of re
e
tion too. In the terms of

impli
it provability this proof 
he
king s
heme is the rule

V ` �

1

' ) V

1

` ';

where �

1

stands for the provability predi
ate in V

1

. In parti
ular, when V

1

is V

itself this rule transforms into the usual impli
it re
e
tion rule IRR(V) for V .



A better internally veri�able theoreti
al des
ription of the veri�
ation s
heme

above is given in terms of expli
it re
e
tion in Se
tion 7.

Another 
lass of examples that need re
e
tion has been shown to me by

Robert Constable and Stuart Allen. These examples are provided by 
omplete-

ness theorems and other provability tests whi
h play important role in theoret-

i
al logi
 and mathemati
s and whi
h are now within the s
ope of interests of

advan
ed automated dedu
tion systems.

De�nition 9. A provability test for V is a formula TEST(x) su
h that V `

TEST(p'q)! �' for any formula '. V is stable with respe
t to provability

tests if for every provability test TEST(x) and every formula '

V ` TEST(p'q) yields V ` ':

. In other words, if ' passes a provability test then ' is provable in V.

Example 4. Formalized 
ompleteness and de
idability theorems may be regarded

as provability tests. Indeed, a 
ompleteness theorem generally states that if '

is valid with respe
t to a 
ertain semanti
s then ' is provable. In its formalized

version su
h a theorem is a formula VALID(p'q)! �' provable in V , and

one 
an take VALID(x) as TEST(x). A formalized de
idability theorem usually

has a form V ` TEST(p'q) $ �', where TEST(x) is a formula des
ribing

the de
idability algorithm working on the 
ode of ' and de
iding whether ' is

provable.

Theorem 2. V is stable with respe
t to provability tests i� the impli
it re
e
-

tion rule IRR(V) is admissible in V.

Proof. Let IRR(V) be admissible in V , and TEST(x) be a provability test. If

V ` TEST(`'') then V ` �' and, by the re
e
tion rule, V ` '. Therefore V is

stable with respe
t to provability tests.

Let now V be stable with respe
t to all provability tests. In parti
ular, the

stability with respe
t to the trivial test when TEST(x) is Provable(x) means that

V ` �' yields V ` ' for every ', i.e. IRR(V) is admissible in V .

5 Metamathemati
al Cost of Soundness and Stability

In this se
tion we will �nd lower and upper bounds for the minimal metatheory

M 
apable of establishing soundness and stability of a given veri�
ation system

V .

We will use the Turing progression as the standard s
ale to measure the

metamathemati
al strength of a given extension of the basi
 theory ([13℄). The

Turing progression V




�

of theories (
f. [18℄, [10℄, [2℄) for V is obtained from V

by iterating the 
onsisten
y assumptions along the Chur
h-Kleene system of


onstru
tive ordinals �.

We 
onsider the �rst ! theories from the Turing progression.

V




0

= V ; V




n+1

= V




n

+ Consis(V




n

); V




!

=

[

n

V




n

:



If V is 
orre
t with respe
t to the standard model of arithmeti
, then the fol-

lowing stri
t in
lusions hold:

V




0

� V




1

� V




2

� : : : � V




!

:

Soundness was des
ribed in [8℄ as the 
ondition that \We must be entirely 
on-

vin
ed that any proof of a theorem whi
h the system 
erti�es as 
orre
t should

indeed be so." A straightforward way to formalize soundness would be to assume

some sort of the semanti
s for V , to takeM powerful enough to express the no-

tion of truth for the V-formulas and to establish inside M a formal analogue of

the statement

for every senten
e ' if ' is provable then ' is true:

This approa
h would require a fairly strongM. In parti
ular, one needs to extend

the language of V in order to write down formulas \' is true"; by the well-known

Tarski theorem there is no su
h formula in the language of V itself.

In fa
t, in the proof 
he
king 
ontext, a veri�
ation system V deals with the

true values of formal statements of an espe
ially simple type, namely provable

�

1

senten
es [[t℄℄'. In this paper we assume that soundness of a veri�
ation

system V means that all senten
es [[t℄℄' derivable in V are true.

Theorem 3. 1. V is 
onsistent i� V ` [[t℄℄' implies [[t℄℄',

2. V suÆ
es to establish 1.

Proof. If for all ' V ` [[t℄℄' implies [[t℄℄', then no false senten
es of the kind [[t℄℄'

is provable in V , therefore V is 
onsistent.

Suppose V is 
onsistent and let V ` [[t℄℄'. If [[t℄℄' were false, then V ` :[[t℄℄',

by �

1


ompleteness of V . This leads to a 
ontradi
tion in V .

2. The straightforward formalization of the proof of 1 with the use of provable

�

1


ompleteness of V .

Corollary 1. Simple 
onsisten
y of V is ne
essary and suÆ
ient for soundness

of a veri�
ation system V.

Now we will �gure out what metatheory 
an establish stability.

De�nition 10. By V is stable we understand the V-formula whi
h is the nat-

ural formalization of the stability property of V. By impli
it re
e
tion rule is

admissible in V we mean the natural formalization in the language of V of the

property that IRR(V) is admissible in V; we will denote this formula

8x(��x!�x):

Theorem 4.

V ` \V is stable$ impli
it re
e
tion rule is admissible in V"

Proof. The straightforward (though deli
ate) formalization of the proof of The-

orem 1.



Theorem 5. Stability of an !-
onsistent veri�
ation system is not provable in

this system.

Proof. By Theorem 4, stability is provable in V i� V ` 8x(��x ! �x). Let x

is the 
ode of ?. Then V ` ��?!�?. By L�ob's theorem, V ` �?, whi
h is

impossible for an !-
onsistent V .

It follows from the above that the minimal metatheory for soundness and

impli
it stability is

M = V + Consis(V) + 8x(��x! �x):

Theorem 6. If V is 
orre
t with respe
t to the standard model of arithmeti


then the metatheory for soundness and impli
it stability stri
tly subsumes the

�rst ! steps of the Turing progression.

Proof. In order to establish V




!

�M 
onsider the formulas �

0

? = ?, �

n+1

? =

�(�

n

?). First of all we note that under the assumptions made about V the

formula Consis(V




n

) is provably equivalent in V to :�

n+1

? (
f. [2℄). Indeed,

Consis(V




0

) is Consis(V), i.e. :�?. Then Consis(V




1

) is a formula stating that

V + Consis(V) 6` ?, i.e. V + :�? 6` ?. This is equivalent to V 6` :�?!? and

V 6` �?. Therefore, Consis(V




1

) is equivalent to :��?. Similar argument works

for n = 2; 3; 4; : : :.

Now we show how to derive all :�

n

?, n = 1; 2; 3; : : : in M. The 
ase n =

1 is 
overed by the assumption that M ` Consis(V), whi
h is equivalent to

M ` :�?, or M ` �?!? For n = 2 put x = ? in 8x(��x ! �x). Then

M ` ��? ! �?. Sin
e we have already had M ` �?!?, we 
on
lude that

M ` ��?! ?, i.e. M ` :��?. A similar argument works for n = 3; 4; 5; : : :.

Thus

V




!

�M:

Now we will 
he
k that V




!

6=M. Suppose

V




!

` Consis(V) ^ 8x(��x! �x):

By the 
ompa
tness argument, there is a natural number n su
h that

V




n

` Consis(V) ^ 8x(��x! �x):

Sin
e V




!

�M, M proves the 
onsisten
y of V




n

. Therefore

V




n

` Consis(V




n

);

whi
h is impossible by the se
ond G�odel in
ompleteness theorem for V




n

.



6 Metamathemati
al Cost of Impli
it Re
e
tion

In an !-
onsistent veri�
ation system V the rule of impli
it re
e
tion IRR(V)

is admissible, i.e. V ` �' yields V ` ' for any formula '. The most simple for-

malization of the admissibility property is the s
heme ��'! �', where � 

stands for the formula of provability of  in V . A general pro
edure of in
orpo-

rating impli
it re
e
tion rule into a veri�
ation system V may be presented by

the following re
e
tion tower of extensions of V (
f. [12℄, [1℄, [11℄):

V

r

0

= V ; V

r

�+1

= V

r

�

+ IRR(V

r

�

); V

r




=

[

��


V

r

�

for a limit ordinal 
:

For the sake of simpli
ity we assume in this se
tion that V is sound with respe
t

to the standard model of arithmeti
.

In this se
tion we will try to �gure out what natural metatheory is able to

establish the admissibility of all the re
e
tion rules from the re
e
tion tower.

De�nition 11. Impli
it re
e
tion prin
iple IRP(V) for a given system V is the

s
heme of formulas

f�'!' j ' is a senten
e of Vg:

Let us 
onsider Feferman`s progression of extensions of V by the impli
it

re
e
tion prin
iples ([10℄):

V

p

0

= V ; V

p

�+1

= V

p

�

+ IRP(V

p

�

); V

p




=

[

��


V

p

�

for a limit ordinal 
:

The system V

p

1

proves admissibility of impli
it re
e
tion in V

r

0

, i.e. the s
heme of

formulas ��'!�'. In addition V

p

1

� V

r

1

, sin
e every instan
e of the rule �'='

in a proof in V

r

1


an be emulated by the axiom �'!'. Moreover, the in
lusion

V

p

1

� V

r

1


an be established in V . Iterating this argument one 
an show that

V

p

�+1

is the theory 
apable of establishing admissibility of the impli
it re
e
tion

rule for V

r

�

.

How bad really is the re
e
tion tower for V? The natural metatheory 
apable of

verifying the whole re
e
tion tower is the limit of Feferman's progression V

p

�

for

all 
onstru
tive ordinals �.

Proposition 1. ([10℄) The limit of V

p

�

for all 
onstru
tive ordinals � equals

V + all true �

1

-senten
es:

It follows from the above that the natural metatheory for the re
e
tion tower

is not 
omputably enumerable, and 
ould not possibly be veri�ed by any sound

mathemati
al means. It 
ontains, for example, the 
onsisten
y statements for all


onsistent axiomati
 theories, among them Consis(ZF) (provided ZF is 
onsis-

tent).

In the next se
tion we des
ribe expli
it re
e
tion, whi
h is internally veri�able

and thus 
ir
umvents the re
e
tion tower.



7 Expli
it Re
e
tion for Veri�
ation Systems

An alternative way to represent provability in a logi
al setting has been sug-

gested in [3℄ { [6℄, where a basi
 theory of expli
it provability was developed. The

key idea of this approa
h is to swit
h from the uniform but impli
it presentation

of provability of ' as �' to a presentation of provability of ' by by a 
ertain

family of expli
it proof terms [[t℄℄' (i.e. Proof (t; p'q)) depending on the 
ontext.

As it was shown in [5℄ and [6℄, every propositional property of the provability

operator (to the extend of the modal logi
 S4) 
an be represented by the family

of �nitely generated proof terms. Within this expli
it provability approa
h some

old problems in theoreti
al logi
 were solved. In parti
ular, expli
it provability

provided the intended provability semanti
s for intuitionisti
 logi
 by formalizing

Brouwer-Heyting-Kolmogorov semanti
s (the problem was open sin
e 1930) and

for the modal logi
 S4 (Goedel's problem, was open sin
e 1933).

In this paper we introdu
e a re
e
tion me
hanism based on expli
it provabil-

ity. This me
hanism 
ould help to avoid metamathemati
al 
osts of using the

impli
it re
e
tion without restri
ting real veri�
ation 
apa
ities of a system.

Theorem 7. For every senten
e ' su
h that V ` ' there is a ground term t of

V su
h that V ` [[t℄℄'.

Proof. Given V ` ' let D be a derivation of ' in V . Let t=`D'=rep(D). By the

assumptions on the fun
tion rep, [[t℄℄' holds. Sin
e V is able to represent all true

�

1

fa
ts, V ` [[t℄℄'.

De�nition 12. The expli
it re
e
tion prin
iple ERP(V) is the s
heme of for-

mulas [[t℄℄'!' for all senten
es ' and all ground terms t.

Theorem 8. (Provability of expli
it re
e
tion [3℄). For any ground term t and

formula '

V ` [[t℄℄'!':

Proof. We give a 
onstru
tive proof of this lemma whi
h delivers an algorithm

for 
onstru
ting a derivation of [[t℄℄'! ' in V given ' and t. First of all, by

the proof 
he
king pro
edure we 
al
ulate the truth value of [[t℄℄'. If this value

is TRUE, then the ground term t represents a derivation of ', from whi
h by

a straightforward re
onstru
tion, we obtain the proof of [[t℄℄'!'. If the proof


he
ker on [[t℄℄' returns FALSE, then by the 
orresponding pro
edure we get the

proof of :[[t℄℄' in V . From that by the straightforward transformation, we get

the proof of [[t℄℄'!'.

Corollary 2. There is an algorithm whi
h given a formula ' and a ground term

t returns the ground term p su
h that

V ` [[p℄℄([[t℄℄'!'):

De�nition 13. A rule �=' is expli
itly veri�able in V if there is a total 
om-

putable fun
tion f su
h that V ` [[y℄℄�! [[f(y)℄℄'.



Theorem 9.

1. Every derivable and every provable rule is expli
itly veri�able.

2. Every expli
itly veri�able rule is veri�able.

3. Every expli
itly veri�able rule is admissible.

Proof. 1. There is a straightforward fun
tion behind every internal rule �= 

whi
h 
al
ulates the 
ode of a proof of  given the 
odes of proofs of �. A natural

formalization of this fun
tion in V gives a term f su
h that V ` [[y℄℄�! [[f(y)℄℄ .

The same holds for all derivable rules. If a rule �=' is provable then V ` �!'.

By expli
it formalization (Theorem 7), V ` [[t℄℄(� ! ') for some ground term

t. Let \�" be a total and 
omputable \appli
ation" fun
tion on proof 
odes,

spe
i�ed by the 
ondition

V ` [[x℄℄('! )! ([[y℄℄'! [[x � y℄℄ )

(
f. [5℄, [6℄). In parti
ular,

V ` [[t℄℄(�!')! ([[x℄℄�! [[t � x℄℄');

whi
h yields V ` [[x℄℄�! [[t � x℄℄'.

2. From V ` [[y℄℄�! [[f(y)℄℄' it easily follows that V ` ��!�'.

3. Let V ` [[y℄℄�! [[f(y)℄℄' and suppose that V ` � . By Theorem 7, V ` [[t℄℄�

for some ground term t. Therefore V ` [[t℄℄� ! [[f(t)℄℄' and V ` [[f(t)℄℄'. By

Theorem 8, V ` [[f(t)℄℄'!'. Thus V ` '

De�nition 14. The expli
it re
e
tion rule ERR(V) is the rule [[t℄℄'=' for all

ground terms t and all senten
es '.

Theorem 10. The expli
it re
e
tion rule ERR(V) is expli
itly veri�able in V.

Proof. By Theorem 8, V ` [[p℄℄([[t℄℄' ! ') for some ground term p. By the

same argument about 
omputable \appli
ation" as in the proof of the previous

theorem,

V ` ([[y℄℄[[t℄℄'! [[p � y℄℄'):

Corollary 3. The expli
it re
e
tion rule ERR(V) is admissible for every veri-

�
ation system V.

De�nition 15. An extension V

0

of V is veri�ably equivalent to V if there is a


omputable fun
tion g of V su
h that V ` [[x℄℄

0

 ! [[g(x)℄℄ , where [[x℄℄

0

 stands

for the formula \x is a proof of  in V

0

. In other words, for a veri�ably equivalent

extension V

0

there is an algorithm that transforms proofs in V

0

into proofs of the

same fa
ts in V.

Theorem 11. An extension of a veri�
ation system by an expli
itly veri�ed

rule is veri�ably equivalent to the original system.



Proof. Let a rule �=' be expli
itly veri�able in a veri�
ation system V , i.e. there

is a 
omputable fun
tion f su
h that V ` [[y℄℄�! [[f(y)℄℄'. Let V

0

be V + �='.

The fun
tion g(x) works as follows. It travels along the proof tree in V

0


oded

by x and 
al
ulates the 
ode of a proof tree in V of the same senten
e (sequent).

If the observed node is a leaf node, then it 
orresponds to an axiom of V

0

, whi
h

is an axiom of V as well. In this situation g does not 
hange the the proof at all.

Let the observed node 
orrespond to an appli
ation of an internal rule �=�,

and let u be the values of g on the prede
essors of the 
urrent node, i.e. V ` [[u℄℄�.

By Theorem 9, there is a 
omputable fun
tion h su
h that V ` [[y℄℄�! [[h(y)℄℄�.

Substituting u for y we derive [[h(u)℄℄� in V . Let g map the observed node to

h(u).

Let the observed node 
orrespond to an appli
ation of the new rule �=', and

let v be the values of g on the prede
essors of this node, i.e. V ` [[v℄℄� . By the


onditions of the theorem V ` [[y℄℄�! [[f(y)℄℄'. Substitute v's for y's, 
on
lude

that V ` [[f(v)℄℄' and let g map the observed node to f(v).

Eventually, at the root node of the V

0

-proof (
oded by) x the fun
tion g

returns the 
ode of a V-proof of the formula (sequent) previously proven by x.

8 Pra
ti
al Suggestions

As one 
an see, expli
it re
e
tion avoids some of the troubles inherent in impli
it

re
e
tion. Here is the list of pra
ti
al suggestions for the designers of veri�
ation

systems.

1. Proof Che
king. Expli
it re
e
tion is used by default in proof 
he
king

when one 
on
ludes that V has veri�ed a fa
t ' given that V ` [[t℄℄' for some

proof 
ode t. This s
heme is theoreti
ally 
orre
t and does not 
ontain any extra

hidden metamathemati
al 
osts. Here the use of expli
it re
e
tion should be

a
knowledged.

2. Extendable Veri�
ation Systems. Here the use of expli
it re
e
tion

may be twofold. Firstly, it appears in the assertion insertion mode (
f. [8℄), when

it is established that V ` [[t℄℄' and then ' is stored as a veri�ed fa
t (i.e. a new

axiom) of V . We have nothing spe
i�
 to add here, sin
e this mode as presented

above (and in [8℄) already agrees with the expli
it re
e
tion re
ommendations.

Se
ondly, the expli
it re
e
tion appears in the rule insertion mode, when �=' is

veri�ed in V and then added to V as a new inferen
e rule. The expli
it re
e
tion

suggests verifying the rule �=' in V expli
itly, i.e. by 
onstru
ting a 
omputable

fun
tion f su
h that V ` [[y℄℄� ! [[f(y)℄℄'. By doing this we guarantee that

the resulting extension is veri�ed in the old system without any hidden meta

assumptions.

If the rule insertion mode uses expli
it veri�
ation only, then there is no

need to have a spe
ial built-in re
e
tion me
hanism: provable stability

of the system is preserved by expli
it veri�
ation (Theorem 11).

Interestingly enough, there are substantial 
lasses of veri�
ation systems where

the impli
it veri�
ation in a 
ertain sense yields the expli
it one. For example, in



many intuitionisti
 systems V ` ��!�' implies V ` [[y℄℄�! [[f(y)℄℄' for some


omputable fun
tion f (
f. [17℄). However, the proof of this fa
t itself 
annot

be formalized in V and its use in the rule insertion mode leads to some sort

of a re
e
tion tower. Therefore, ever for the 
onstru
tive systems the pra
ti
al

suggestion would be to use the expli
it veri�
ation, i.e. to establish V ` [[y℄℄�!

[[f(y)℄℄' dire
tly rather than to prove V ` ��!�' and then to apply a general

theorem of obtaining the expli
it veri�
ation from the impli
it one; this involves

some hidden and potentially high metamathemati
al 
osts.

3. Advan
ed systems with built-in re
e
tion me
hanisms. There is a

number of systems whi
h have or intend to have su
h me
hanisms. The paper

[11℄ mentions several of them: FOL, NQTHM, HOL and Nuprl. At least

one more is 
oming: MetaPrl at Cornell University. Probably more systems

will join this set sin
e re
e
tion arguments are often used in mathemati
al and


ommon reasoning (
f. Se
tion 4). The existing impli
it re
e
tion me
hanisms

in these systems lead to unne
essary metamathemati
al 
osts (
f. Se
tion 6).

For su
h systems the idea of having expli
it re
e
tion (perhaps, along with the

impli
it one) might be seriously 
onsidered, be
ause the expli
it re
e
tion 
an

be added to a system without any extra metamathemati
al assumptions at all

(Theorem 10).
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