On Explicit Reflection in Theorem Proving
and Formal Verification

Sergei N. Artemov *

Department of Computer Science
Cornell University,
Ithaca, NY 14853, U.S.A.
artemov@cs.cornell.edu
http://www.cs.cornell.edu/Info/People/artemov

Abstract. We show that the stability requirement for a verification sys-
tem yields the necessity of some sort of a reflection mechanism. However,
the traditional reflection rule based on the Gdédel implicit provability
predicate leads to a “reflection tower” of theories which cannot be for-
mally verified. We found natural lower and upper bounds on a metathe-
ory capable of establishing stability of a given verification system.

The paper introduces an explicit reflection mechanism which can be veri-
fied internally. This circumvents the reflection tower and provides a strict
justification for the verification process. On the practical side, the paper
gives specific recommendations concerning the verification of inference
rules and building a verifiable reflection mechanism for a theorem prov-
ing system.

1 Introduction

There is a large variety of theorem provers and proof checkers which can be used
for verification (cf. [8], [1], [L1]). The mathematical counterparts of those systems
range from first order logic (e.g. in FOL) and certain fragments of first order
arithmetic to higher order logic (HOL), the systems with powerful principles
sufficient to accommodate most of the classical mathematics (Mizar) and most
of the computational and constructive tools (Nuprl). The underlying logic of
such systems can be either classical or intuitionistic. In this paper we assume
that

The degree of confidence in facts verified by a certain system is not higher
than the degree of confidence in the system itself.

This paradigm yields the necessity to keep an account of the tools used in a
given verification process, including the verification system V itself along with

* The research described in this paper was supported in part by ARO under the MURI
program “Integrated Approach to Intelligent Systems”, grant DA AH04-96-1-0341, by
DARPA under program LPE, project 34145.

an exact description of the set of all metamathematical assumptions M made
in the process of verification. Therefore, the set of beliefs which the verification
is based upon should include V U M. Without loss of generality we assume in
this paper that a metatheory M of a given verification system V contains V),

therefore, VUM = M.

For example, suppose we want to verify a statement F' by means of the
first order arithmetic PA (i.e. V = PA). One of the possible ways to
put this problem on a formal setting is to say that our goal consists in
establishing that PA F Provable(F’), where Provable(F) is a formal state-
ment saying that “F' is provable by certain formal tools”. Suppose that
we have established that ZF + Provable(F), where ZF is the Zermelo-
Frenkel set theory (a much stronger theory than PA). This corresponds
to a realistic situation when a verifier uses the power of all of mathe-
matics, not only the elementary methods formalizable in PA. Here is the
sketch of the standard metamathematical argument which under certain
assumptions about ZF concludes that in fact PA F Provable(F): assume
that ZF is w-consistent (cf. [15],[7],[16]); since Provable(F') is an arith-
metical ¥ statement, this yields that Provable(F') is true and, by the
XY1-completeness of PA, PA + Provable(F'). On the one hand, we have
succeeded in establishing that PA + Provable(F). On the other hand,
at the metalevel of this argument we have used the power of ZF and
even the assumption of w-consistency of ZF. A total account of the be-
liefs involved in this verification process should include this assumption,
which, by the way, has never been and could not possibly be proven by
any usual consistent mathematical means.

In this paper we will try to demonstrate the following three points:

1. Some form of the reflection rule is a necessary part of an extendable and
stable verification system. This will emerge as a natural corollary of the sound-
ness, extensibility, and stability assumptions (cf. [8]) about a verification system.
Moreover, even the most basic proof checking scheme when V verifies a proof of
F and then concludes that F' itself holds requires reflection.

2. The traditional reflection based on the implicit provability predicate does
not provide a satisfactory justification of formal verification. It is well-known
that the implicit reflection in a given system)V cannot be verified in V (cf. [8],
[12], [1], [11]). In particular, this means that implicit reflection cannot justify even
the basic proof checking by means of ¥V without imposing additional unverifiable
assumptions on V. The present paper demonstrates that an iterative use of
reflection leads to the “reflection tower” of implicit reflection rules which is not
computably enumerable and cannot be itself verified by any formal tools. If one
takes into account these hidden metamathematical costs of implicit reflection,
then no verifiable stable systems exist.

3. There is a verifiable reflection mechanism: “explicit reflection” (introduced
in the present paper), which provides a foundational justification of the verifica-
tion process. Explicit reflection requires more information in order to certify the

premises of the reflection rule. However, this additional information is usually
available in real processes of verification; the old implicit provability model just
has not had a tool of its utilization. The explicit reflection circumvents the reflec-
tion tower and provides the strict justification of verification. On the practical
side, the paper gives specific recommendations concerning the verification of the
admissible rules and building a verifiable reflection mechanism for a theorem
proving system.

2 Verification Systems

Definition 1. Under a verification system V we will understand a formal
theory satisfying the following conditions a) — d):

a) The underlying logic of V is either classical or intuitionistic.

b) Proofhood in V is decidable, therefore theoremhood in V is computably
enumerable. Note that by the well-known Craig Theorem the former follows from
the latter for an appropriate choice of axiom system.

c) V is strong enough to represent any computable function and decidable
relation.

d) V has some sort of a numeration of syntax mechanism in the style of [8],
[1]. In particular, there is an injective function rep which maps syntactic objects
like terms, formulas, finite sequences of formulas, sequents, finite trees labeled
by sequents, derivation trees, etc., into standard ground terms of V. The usual
notation used in this case is "s = rep(s). The function rep and its inverse are
both computable. We assume that V is able to derive formalizations of “usual”
combinatory properties of the syntactic objects at a level corresponding to the
first order intuitionistic arithmetic HA.

For the sake of notational simplicity we will use the same names for the
informal objects (relations, functions, numbers) and for their formal counterparts
(formulas, terms, ground terms) whenever unambiguous.

Examples of verification systems: the first order arithmetic PA; the first
order intuitionistic arithmetic HA and its extensions; second order arithmetic;
Martin-Lo6f type theory Z7T; formal set theory ZF; etc. Note that all the above
conditions on V have a purely constructive syntactic character. We have assumed
neither semantic properties of V (e.g. soundness with respect to some semantics),
nor metamathematical ones (consistency, w-consistency, etc.).

Definition 2. For any verification system V there is a provably Ay formula
Proof (z,y) in the language of V (called a proof predicate) which is obtained
by a natural formalization of the inductive definition of derivation in V (cf.
[9], [8], [1]). In particular, Proof ("D7,"¢7) holds iff D is a proof of ¢ in V.
The Gédel provability predicate Provable(y) is defined as 3z Proof (z,y). We
will use the notation O for Provable(" ™) and [p]p for Proof (p,"¢™). For any
finite set of V-formulas I' by OI" we mean the conjunction of Ty ’s for all ¢ € I

Definition 3. The consistency formula Consis(V) is defined as =01, where L
is the standard boolean constant FALSE in V.

The informal meaning of Consis()) is that there is no a proof of FALSE in V:
this is one of the equivalent formulations of the consistency assertion of V in the
language of V.

We will refer to the provability predicate OI(-) as the implicit provability
predicate. The reason for choosing this name lies in the fact that in the formula
O (i.e. 3z Proof (z,"¢")) the proof is represented implicitly by the existential
quantifier, which does not provide any specification of this proof.

The implicit provability predicate has been studied extensively since its in-
vention by Go6del in 1930. The milestone results here are the second Gdédel in-
completeness theorem (cf. [15], [7])), which states that

If V is consistent, then / Consis(V),
and the Loéb theorem which says that
VY F Op— @ implies V F .
By the well-known Hilbert-Bernays lemma (cf. [15],[7]),
Vi@ implies VF Op.

This lemma can be considered as a justification of the formalization rule p/O¢
for V', which states that every proof in V can be formalized in V. The proof of the
formalization rule is purely syntactic and does not involve any extra assumptions
about V. Moreover, this rule can be formalized and proven inside V (cf. [15], [7]):

VYV Op — O0p.

Below we will use one more fact about the provability operator OJ, usually at-
tributed to Hilbert, Bernays and Léb (cf.[15],[7]):

VEOp—=v) = (Op—0y).

3 Stability Equals Admissibility of Reflection Rule

The basic properties required from a verification system are soundness, exten-
sibility, and stability ([8]). We will discuss soundness in Section 4. Extensibility
and stability will appear in this section below.

Definition 4. A rule of inference R in the language of V is a computable par-
tial function from a decidable set of lists of V-formulas to the set of V-formulas.

The usual notation for a rule of inference R is I'/y, where I' indicates the
argument of R (premises), and ¢ the value R(I') of R (conclusion). For the
sake of notational convenience we will not distinguish between a finite list of
formulas I' and one formula which is the conjunction of all formulas from I’
when unambiguous. We would like to think that such an abuse of notation will
be tolerated by a reader.

Definition 5. A rule of inference I'/p in V is derivable if for any instance of
I'/ there is a deduction in V of its conclusion from its premises.

A rule of inference I'/p in V is provable if VF I — .

A rule of inference I'/p in V is admissible if V I I implies V | .

Derivable rules is a system with the deduction theorem are provable. It is
also natural to assume that every provable rule is derivable since there is a
standard deduction of ¢ from I' (free premises) and I" — ¢ (has a derivation
without premises in V.). To a certain extend the notion of provable rule is a
system-independent version of the notion of derivable rule.

It is immediate from the definitions that every provable rule of inference
is admissible. None of the converse implications holds in a general case. It is
important to notice that there are serious reasons to assume that derivable and
provable rules alone are not sufficient for an advanced system of automated
deduction and verification (cf. also [14]).

Ezample 1. Here are examples of widely used admissible rules that are not prov-
able: p/Vzp (generalization), o(z)/p(y) (renaming of free variables) ——o /o,
where o is a X sentence (Markov rule for intuitionistic arithmetic HA, cf. [17]),
disjunctive and ezxistential rules for intuitionistic systems, ¢ /Oy (formalization),
Op — ¢/ (Léb rule), Op/p (implicit reflection, for classical and intuitionistic
arithmetic), etc.

Extending V by adding rules provable in V does not change the system. In
turn, stability of V with respect to admissible rules rises to a serious theoretical
and practical problem since some of the admissible rules cannot be verified inside

V.

Definition 6. A rule of inference I'/p in V is verifiable in M if M - 0OI' —
Op. A rule in V is internally verifiable if it is verifiable in V.

Every admissible rule in V is verifiable in some sufficiently large theory M, but
not every one of them is verifiable in V.

Example 2. The rules generalization, renaming of free variables, formalization,
Léb rule and internally verifiable. The rules implicit reflection, Markov rule,
disjunctive rule, existential rule are not internally verifiable.

We accept the understanding of stability as conservativity of extensions by
internally verifiable rules (cf. [1], [8], [11], [14]).

Definition 7. System V' DV is conservative over V if for any formula 1)
V' implies V F .

A system V is stable if for any rule I'/ o verifiable in V the system V + I'[¢ is
conservative over V.

Definition 8. By IRR(V) we denote the implicit reflection rule Oy/p where
O represents the provability of ¢ in V.

Ezample 3. Here is the standard example of a formal theory for which the im-
plicit reflection rule is not admissible ([9]): V = PA +-Consis(PA). This system
is consistent, i.e. V I/ L. On the other hand V + 0.1, where O stands for prov-
ability in this particular V.

Theorem 1. A wverification system V is stable iff the implicit reflection rule
IRR(V) is admissible in V.

Proof. Let V be a stable system. Let us consider the rule Ry consisting of a single
pair (TRUE, @), where TRUE is the propositional constant for true statements
in V. Since V + TRUE, we also have V + O(TRUE). By stability of V, for all
w, if V F O(TRUE) —» O¢ and V + TRUE/¢ b 1, then V . Equivalently,
for all p,¢ if VF Op and V + ¢ F 4, then V I). Let ¢ be ¢. Then V F Op
implies V ¢ for all ¢, therefore IRR(V) is admissible in V.

Let now IRR(V) be admissible in V, i.e. V I Oy implies V I ¢, and let '/
be a verified rule, i.e. V + OI' — Op. By an induction on the derivation in
V + I'/p we prove that V + I'/¢ F ¢ implies V F ¢. The induction basis holds
because V and V + I'/p have the same set of axioms. The induction step in the
case of a rule other than I'/y is trivial. Let ¢) be obtained in V + I'/¢ by the rule
I'/p, i.e. there is specific I'] such that I /1 is a special case of the rule I'/p and
V + I'/¢ F I'. By the induction hypothesis, V I I';. By the formalization rule
in V, V F OI. Since the rule I'/¢ is verified, we have V I Oy — O, therefore
V + t. By the rule IRR(V), V F . 1

Note 1. Such systems as LCF, Nuprl, HOL have the extension mechanisms
of tactics based on the representation of provable rules. This use of tactics can
be justified inside the system and the stability with respect to tactics can be
established without any additional assumptions. A general case of stability with
respect to all verified rules (including the ones that are not provable) was consid-
ered in [1], [8], [11], [14]. It follows from Theorem 1 that the general stability of a
given verification system V is equivalent to admissibility of the implicit reflection
rule in V.

4 Provability Tests and other Sources of Reflection

Stability of a verification system with respect to verifiable rules is not the
only place where reflection rule becomes necessary.

The basic proof checking scheme when V verifies a proof of ¢ in V; and
then concludes that Vi F ¢ requires some sort of reflection too. In the terms of
implicit provability this proof checking scheme is the rule

V"lep = Vll—(p,

where [0; stands for the provability predicate in V;. In particular, when V; is V
itself this rule transforms into the usual implicit reflection rule IRR(V) for V.

A better internally verifiable theoretical description of the verification scheme
above is given in terms of explicit reflection in Section 7.

Another class of examples that need reflection has been shown to me by
Robert Constable and Stuart Allen. These examples are provided by complete-
ness theorems and other provability tests which play important role in theoret-
ical logic and mathematics and which are now within the scope of interests of
advanced automated deduction systems.

Definition 9. A provability test for V is a formula TEST(z) such that V
TEST("¢7) — Oy for any formula ¢. V is stable with respect to provability
tests if for every provability test TEST(z) and every formula ¢

VE TEST(p) yields V + .
. In other words, if p passes a provability test then ¢ is provable in V.

Ezample 4. Formalized completeness and decidability theorems may be regarded
as provability tests. Indeed, a completeness theorem generally states that if ¢
is valid with respect to a certain semantics then ¢ is provable. In its formalized
version such a theorem is a formula VALID("¢")— Oy provable in V, and
one can take VALID(z) as TEST(z). A formalized decidability theorem usually
has a form V + TEST("¢") <> Op, where TEST(z) is a formula describing
the decidability algorithm working on the code of ¢ and deciding whether ¢ is
provable.

Theorem 2. V is stable with respect to provability tests iff the implicit reflec-
tion rule IRR(V) is admissible in V.

Proof. Let IRR(V) be admissible in V, and TEST(z) be a provability test. If
VYV TEST(‘p’) then V I Oy and, by the reflection rule, V + ¢. Therefore V is
stable with respect to provability tests.

Let now V be stable with respect to all provability tests. In particular, the
stability with respect to the trivial test when TEST(z)is Provable(z) means that
V F Oy yields V I ¢ for every ¢, i.e. IRR(V) is admissible in V.

5 Metamathematical Cost of Soundness and Stability

In this section we will find lower and upper bounds for the minimal metatheory
M capable of establishing soundness and stability of a given verification system
V.

We will use the Turing progression as the standard scale to measure the
metamathematical strength of a given extension of the basic theory ([13]). The
Turing progression V5 of theories (cf. [18], [10], [2]) for V is obtained from V
by iterating the consistency assumptions along the Church-Kleene system of
constructive ordinals a.

We consider the first w theories from the Turing progression.

VS=V, Vo, =Vi+ Consis(Vs), V=[]V

If V is correct with respect to the standard model of arithmetic, then the fol-
lowing strict inclusions hold:

Vo CViCV;C...CV..

Soundness was described in [8] as the condition that “We must be entirely con-
vinced that any proof of a theorem which the system certifies as correct should
indeed be s0.” A straightforward way to formalize soundness would be to assume
some sort, of the semantics for V, to take M powerful enough to express the no-
tion of truth for the V-formulas and to establish inside M a formal analogue of
the statement

for every sentence p if ¢ is provable then ¢ is true.

This approach would require a fairly strong M. In particular, one needs to extend
the language of V in order to write down formulas “p is true”; by the well-known
Tarski theorem there is no such formula in the language of V itself.

In fact, in the proof checking context, a verification system V deals with the
true values of formal statements of an especially simple type, namely provable
A, sentences [t]o. In this paper we assume that soundness of a verification
system V means that all sentences [t]¢ derivable in V are true.

Theorem 3. 1.V is consistent iff V & [t]e implies [t]e,
2.V suffices to establish 1.

Proof. If for all ¢ V F [t]¢ implies [[t], then no false sentences of the kind [t]¢
is provable in V), therefore V is consistent.

Suppose V is consistent and let V F [t]p. If [t]e were false, then V F —[t] e,
by A; completeness of V. This leads to a contradiction in V.

2. The straightforward formalization of the proof of 1 with the use of provable
A; completeness of V. 11

Corollary 1. Simple consistency of V is necessary and sufficient for soundness
of a verification system V.

Now we will figure out what metatheory can establish stability.

Definition 10. By V is stable we understand the V-formula which is the nat-
ural formalization of the stability property of V. By implicit reflection rule is
admissible in V we mean the natural formalization in the language of V of the
property that IRR(V) is admissible in V; we will denote this formula

Ve (OOx — Oz).
Theorem 4.
YV F “V is stable + implicit reflection rule is admissible in V”

Proof. The straightforward (though delicate) formalization of the proof of The-
orem 1. 1

Theorem 5. Stability of an w-consistent verification system is not provable in
this system.

Proof. By Theorem 4, stability is provable in V iff V F Vz(OOz — Ox). Let
is the code of L. Then V F OO1L — OL. By Lob’s theorem, V - 1, which is
impossible for an w-consistent V. i

It follows from the above that the minimal metatheory for soundness and
implicit stability is

M =V + Consis(V) + Vz(OOz — Ox).

Theorem 6. If V is correct with respect to the standard model of arithmetic
then the metatheory for soundness and implicit stability strictly subsumes the
first w steps of the Turing progression.

Proof. In order to establish V¢ C M consider the formulas 0°1 = L, 011 =
O(O™L). First of all we note that under the assumptions made about V the
formula Consis(VS) is provably equivalent in V to =007 L (cf. [2]). Indeed,
Consis(V§) is Consis(V), i.e. "OL. Then Consis(VY) is a formula stating that
V + Consis(V) i L, i.e. V 4+ =0OL I/ L. This is equivalent to V I/ =01 — 1 and
V I/ OL. Therefore, Consis(VY) is equivalent to mO0L. Similar argument works
forn=2,3,4,....

Now we show how to derive all -O0" 1, n = 1,2,3,...in M. The case n =
1 is covered by the assumption that M + Consis(V), which is equivalent to
ME-SOL or MEFOL— 1 Forn=2put =1 in Ve(OOz — Oz). Then
M F0O0L — OL. Since we have already had M F O1 — 1, we conclude that
MEOOL - 1, ie. MF-0OOL. A similar argument works for n = 3,4, 5,
Thus

VS, C M.
Now we will check that V& # M. Suppose
Vs Consis(V) AVz(OOz — Oz).
By the compactness argument, there is a natural number n such that
Ve Consis(V) AV (OOz — Ox).
Since VS C M, M proves the consistency of V. Therefore
Ve Consis(VY),

which is impossible by the second Gd&del incompleteness theorem for V5. i

6 Metamathematical Cost of Implicit Reflection

In an w-consistent verification system V the rule of implicit reflection IRR(V)
is admissible, i.e. V - Oy yields V F ¢ for any formula . The most simple for-
malization of the admissibility property is the scheme OOy — Oy, where [y
stands for the formula of provability of ¢ in V. A general procedure of incorpo-
rating implicit reflection rule into a verification system) may be presented by
the following reflection tower of extensions of V (cf. [12], [1], [11]):

Vo =V, Vi =VL+IRR(V,), VI = U Vi for a limit ordinal v.
B=y

For the sake of simplicity we assume in this section that V is sound with respect
to the standard model of arithmetic.

In this section we will try to figure out what natural metatheory is able to
establish the admissibility of all the reflection rules from the reflection tower.

Definition 11. Implicit reflection principle IRP(V) for a given system V is the
scheme of formulas

{Op—¢| ¢ is a sentence of V}.

Let us consider Feferman‘s progression of extensions of V by the implicit
reflection principles ([10]):

vy =V, V§+1 =V? + IRP(V?), Vﬁ = U Vg for a limit ordinal .
B=y

The system V¥ proves admissibility of implicit reflection in Vjj, i.e. the scheme of
formulas OO — Oe. In addition V' C V}, since every instance of the rule O /¢
in a proof in V] can be emulated by the axiom Ogp — ¢. Moreover, the inclusion
VP C VI can be established in V. Iterating this argument one can show that
VP | is the theory capable of establishing admissibility of the implicit reflection
rule for V..

How bad really is the reflection tower for V? The natural metatheory capable of
verifying the whole reflection tower is the limit of Feferman’s progression V% for
all constructive ordinals a.

Proposition 1. ([10]) The limit of V® for all constructive ordinals o equals
V + all true II,-sentences.

It follows from the above that the natural metatheory for the reflection tower
is not computably enumerable, and could not possibly be verified by any sound
mathematical means. It contains, for example, the consistency statements for all
consistent axiomatic theories, among them Consis(ZF) (provided ZF is consis-
tent).

In the next section we describe explicit reflection, which is internally verifiable
and thus circumvents the reflection tower.

7 Explicit Reflection for Verification Systems

An alternative way to represent provability in a logical setting has been sug-
gested in [3] — [6], where a basic theory of ezplicit provability was developed. The
key idea of this approach is to switch from the uniform but implicit presentation
of provability of ¢ as Oy to a presentation of provability of ¢ by by a certain
family of explicit proof terms [[t]p (i.e. Proof(t,"¢7)) depending on the context.
As it was shown in [5] and [6], every propositional property of the provability
operator (to the extend of the modal logic S4) can be represented by the family
of finitely generated proof terms. Within this explicit provability approach some
old problems in theoretical logic were solved. In particular, explicit provability
provided the intended provability semantics for intuitionistic logic by formalizing
Brouwer-Heyting-Kolmogorov semantics (the problem was open since 1930) and
for the modal logic S4 (Goedel’s problem, was open since 1933).

In this paper we introduce a reflection mechanism based on explicit provabil-
ity. This mechanism could help to avoid metamathematical costs of using the
implicit reflection without restricting real verification capacities of a system.

Theorem 7. For every sentence ¢ such that V F ¢ there is a ground term t of
V such that V + [t]e.

Proof. Given V I ¢ let D be a derivation of ¢ in V. Let t=‘D’=rep(D). By the
assumptions on the function rep, [t]¢ holds. Since V is able to represent all true
Ay facts, V F [t]e.

Definition 12. The explicit reflection principle ERP (V) is the scheme of for-
mulas [t]o— ¢ for all sentences ¢ and all ground terms t.

Theorem 8. (Provability of explicit reflection [3]). For any ground term t and
formula ¢
VE [tle—e.

Proof. We give a constructive proof of this lemma which delivers an algorithm
for constructing a derivation of [t]y — ¢ in V given ¢ and ¢. First of all, by
the proof checking procedure we calculate the truth value of [[t]. If this value
is TRUEFE, then the ground term ¢ represents a derivation of ¢, from which by
a straightforward reconstruction, we obtain the proof of [t]¢ — ¢. If the proof
checker on [[t] returns FALSE, then by the corresponding procedure we get the
proof of —[[t]¢ in V. From that by the straightforward transformation, we get
the proof of [[t]e— . B

Corollary 2. There is an algorithm which given a formula ¢ and a ground term
t returns the ground term p such that

V E [pI([tle = »)-

Definition 13. A rule I'/ is explicitly verifiable in V if there is a total com-
putable function f such that V & [y = [f(v)]e-

Theorem 9.
1. Every derivable and every provable rule is explicitly verifiable.
2. Every explicitly verifiable rule is verifiable.
3. Every explicitly verifiable rule is admissible.

Proof. 1. There is a straightforward function behind every internal rule A/
which calculates the code of a proof of 1) given the codes of proofs of A. A natural
formalization of this function in V gives a term f such that V F [y]A— [f(y)].
The same holds for all derivable rules. If a rule I'/¢ is provable then V F ' — ¢.
By explicit formalization (Theorem 7), V F [t](I" — ¢) for some ground term
t. Let “” be a total and computable “application” function on proof codes,
specified by the condition

VE [zl =¢) = ([yle = [= - y1v)
(cf. [5], [6])- In particular,
VI =¢) = ([e] 1=t 2]v),

which yields V [z] "= [t -]

2. From V F [y]I"'—= [f(y)]p it easily follows that V F OI" — Op.

3. Let VF [y]I"—[f(v)]¥ and suppose that V - I". By Theorem 7, V F [t]I"
for some ground term ¢. Therefore V & [t]I" — [f(¢)]¢ and V F [f(t)]e. By
Theorem 8, V F [f(t)]J¢—¢. Thus Vo

Definition 14. The explicit reflection rule ERR(V) is the rule [t]e/¢ for all
ground terms t and all sentences (.

Theorem 10. The explicit reflection rule ERR(V) is explicitly verifiable in V.

Proof. By Theorem 8, V F [p]([t]¢ — ¢) for some ground term p. By the
same argument about computable “application” as in the proof of the previous
theorem,

VE([ylltle—[p - yle)-

Corollary 3. The explicit reflection rule ERR(V) is admissible for every veri-
fication system V.

Definition 15. An extension V' of V is verifiably equivalent to V if there is a
computable function g of V such that V & [z]'1) — [g(z)]ep, where]+ stands
for the formula “x is a proof of v in V'. In other words, for a verifiably equivalent
extension V' there is an algorithm that transforms proofs in V' into proofs of the
same facts in V.

Theorem 11. An extension of a verification system by an explicitly verified
rule is verifiably equivalent to the original system.

Proof. Let arule I'/ be explicitly verifiable in a verification system V), i.e. there
is a computable function f such that V F [y]I"— [f(y)]e- Let V' be V + I'/¢.
The function g(z) works as follows. It travels along the proof tree in V' coded
by z and calculates the code of a proof tree in V of the same sentence (sequent).
If the observed node is a leaf node, then it corresponds to an axiom of V', which
is an axiom of V as well. In this situation g does not change the the proof at all.

Let the observed node correspond to an application of an internal rule A/6,
and let u be the values of g on the predecessors of the current node, i.e. V F [u] A.
By Theorem 9, there is a computable function h such that V F [y]A— [h(y)]0.
Substituting u for y we derive [h(u)]€ in V. Let g map the observed node to

Let the observed node correspond to an application of the new rule I'/¢, and
let v be the values of g on the predecessors of this node, i.e. V F [v]I". By the
conditions of the theorem V + [y]I"— [f(y)]e. Substitute v’s for y’s, conclude
that V F [f(v)]e and let g map the observed node to f(v).

Eventually, at the root node of the V'-proof (coded by) z the function g
returns the code of a V-proof of the formula (sequent) previously proven by z. i

8 Practical Suggestions

As one can see, explicit reflection avoids some of the troubles inherent in implicit
reflection. Here is the list of practical suggestions for the designers of verification
systems.

1. Proof Checking. Explicit reflection is used by default in proof checking
when one concludes that V has verified a fact ¢ given that V F [t]p for some
proof code t. This scheme is theoretically correct and does not contain any extra
hidden metamathematical costs. Here the use of explicit reflection should be
acknowledged.

2. Extendable Verification Systems. Here the use of explicit reflection
may be twofold. Firstly, it appears in the assertion insertion mode (cf. [8]), when
it is established that V I [t]l¢ and then ¢ is stored as a verified fact (i.e. a new
axiom) of V. We have nothing specific to add here, since this mode as presented
above (and in [8]) already agrees with the explicit reflection recommendations.
Secondly, the explicit reflection appears in the rule insertion mode, when I'/ is
verified in V and then added to V as a new inference rule. The explicit reflection
suggests verifying the rule I'/y in V explicitly, i.e. by constructing a computable
function f such that V + [y]I" = [f(y)]¢. By doing this we guarantee that
the resulting extension is verified in the old system without any hidden meta
assumptions.

If the rule insertion mode uses explicit verification only, then there is no
need to have a special built-in reflection mechanism: provable stability
of the system is preserved by explicit verification (Theorem 11).

Interestingly enough, there are substantial classes of verification systems where
the implicit verification in a certain sense yields the explicit one. For example, in

many intuitionistic systems V F OI' = Oy implies V F [y]I" = [f(y)]¢ for some
computable function f (cf. [17]). However, the proof of this fact itself cannot
be formalized in V and its use in the rule insertion mode leads to some sort
of a reflection tower. Therefore, ever for the constructive systems the practical
suggestion would be to use the explicit verification, i.e. to establish V F [y]I" —
[f(y)]¢ directly rather than to prove V OI'— Og and then to apply a general
theorem of obtaining the explicit verification from the implicit one; this involves
some hidden and potentially high metamathematical costs.

3. Advanced systems with built-in reflection mechanisms. There is a
number of systems which have or intend to have such mechanisms. The paper
[11] mentions several of them: FOL, NQTHM, HOL and Nuprl. At least
one more is coming: MetaPrl at Cornell University. Probably more systems
will join this set since reflection arguments are often used in mathematical and
common reasoning (cf. Section 4). The existing implicit reflection mechanisms
in these systems lead to unnecessary metamathematical costs (cf. Section 6).
For such systems the idea of having explicit reflection (perhaps, along with the
implicit one) might be seriously considered, because the explicit reflection can
be added to a system without any extra metamathematical assumptions at all
(Theorem 10).

9 Acknowledgements

I am indebted to Robert Constable for attracting my attention to the problem of
reflection in verification systems and for support during my work on this paper. I
am also grateful to Stuart Allen, Anil Nerode, Elena Nogina and Vaughan Pratt
for valuable suggestions and criticism. Many thanks to Martin Davis for fruitful
discussion and for sending me a copy of his paper.

References

1. Allen, S., Constable R., Howe D., Aitken W.: The Semantics of Reflected Proofs.
In: Proceedings of the Fifth Annual Symposium on Logic in Computer Science, Los
Alamitos, CA, USA, IEEE Computer Society Press (1990) 95-107.

2. Artemov, S.: Extensions of Theories by the Reflection Principles and the Corre-
sponding Modal Logics. Ph.D. Thesis (in Russian). Moscow (1979)

3. Artemov, S., Strassen, T.: The Basic Logic of Proofs. In.: Lecture Notes in Computer
Science. Vol. 702. Springer-Verlag (1993) 14-28.

4. Artemov, S.: Logic of Proofs. Annals of Pure and Applied Logic 67 (1994) 29-59

5. Artemov, S.: Operational Modal Logic. Technical Report MSI 95-29, Cornell Uni-
versity (1995)

6. Artemov, S.: Explicit Provability: the Intended Semantics for Intuitionistic and
Modal Logic. Technical Report CFIS 98-10, Cornell University (1998)

7. Boolos, G.: The Unprovability of Consistency: An Essay in Modal Logic. Cambridge
University Press (1979)

8. Davis, M., Schwartz, J.: Metamathematical Extensibility for Theorem Verifiers and
Proof Checkers. Computers and Mathematics with Applications 5 (1979) 217-230

9. Feferman, S.: Arithmetization of Metamathematics in a General Setting. Funda-
menta Mathematicae 49 (1960) 35-92

10. Feferman, S.: Transfinite Recursive Progressions of Axiomatic Theories. Journal of
Symbolic Logic 27 (1962) 259-316

11. Harrison, J.: Metatheory and Reflection in Theorem Proving: A Survey and Cri-
tique. University of Cambridge (1995)
http://www.dcs.glasgow.ac.uk/ tfm/hol-bib.html#H

12. Knoblock, T., Constable, R.: Formalized Metareasoning in Type Theory. In: Pro-
ceedings of the First Annual Symposium on Logic in Computer Science. Cambridge,
MA, USA, IEEE Computer Society Press (1986) 237-248

13. Kreisel, G., Levy, A.: Reflection Principles and Their Use for Establishing the Com-
plexity of Axiomatic Systems. Zeitschrift fiir Mathematische Logik und Grundlagen
der Mathematik 14 (1968) 97-142

14. Pollack, R.: On Extensibility of Proof Checkers. Lecture Notes in Computer Sci-
ence, Vol. 996. Springer-Verlag, Berlin Heidelberg New York (1995) 140-161

15. Smorynski, C.: The Incompleteness Theorems. In: Barwise, J (ed.): Handbook of
Mathematical Logic, Vol. 4. North-Holland, Amsterdam (1977) 821-865

16. C. Smorynski, C.: Self-Reference and Modal Logic. Springer-Verlag, Berlin (1985)

17. A.S. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. An Introduc-
tion, Vol. 1, Amsterdam; North Holland (1988)

18. Turing, A.: Systems of Logics Based on Ordinals. Proceedings of the London Math-
ematical Society, Ser. 2, Vol. 45 (1939) 161-228

