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Abstrat. We show that the stability requirement for a veri�ation sys-

tem yields the neessity of some sort of a reetion mehanism. However,

the traditional reetion rule based on the G�odel impliit provability

prediate leads to a \reetion tower" of theories whih annot be for-

mally veri�ed. We found natural lower and upper bounds on a metathe-

ory apable of establishing stability of a given veri�ation system.

The paper introdues an expliit reetion mehanism whih an be veri-

�ed internally. This irumvents the reetion tower and provides a strit

justi�ation for the veri�ation proess. On the pratial side, the paper

gives spei� reommendations onerning the veri�ation of inferene

rules and building a veri�able reetion mehanism for a theorem prov-

ing system.

1 Introdution

There is a large variety of theorem provers and proof hekers whih an be used

for veri�ation (f. [8℄, [1℄, [11℄). The mathematial ounterparts of those systems

range from �rst order logi (e.g. in FOL) and ertain fragments of �rst order

arithmeti to higher order logi (HOL), the systems with powerful priniples

suÆient to aommodate most of the lassial mathematis (Mizar) and most

of the omputational and onstrutive tools (Nuprl). The underlying logi of

suh systems an be either lassial or intuitionisti. In this paper we assume

that

The degree of on�dene in fats veri�ed by a ertain system is not higher

than the degree of on�dene in the system itself.

This paradigm yields the neessity to keep an aount of the tools used in a

given veri�ation proess, inluding the veri�ation system V itself along with

?
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an exat desription of the set of all metamathematial assumptions M made

in the proess of veri�ation. Therefore, the set of beliefs whih the veri�ation

is based upon should inlude V [M. Without loss of generality we assume in

this paper that a metatheory M of a given veri�ation system V ontains V ,

therefore, V [M =M.

For example, suppose we want to verify a statement F by means of the

�rst order arithmeti PA (i.e. V = PA). One of the possible ways to

put this problem on a formal setting is to say that our goal onsists in

establishing that PA ` Provable(F ), where Provable(F ) is a formal state-

ment saying that \F is provable by ertain formal tools". Suppose that

we have established that ZF ` Provable(F ), where ZF is the Zermelo-

Frenkel set theory (a muh stronger theory than PA). This orresponds

to a realisti situation when a veri�er uses the power of all of mathe-

matis, not only the elementary methods formalizable in PA. Here is the

sketh of the standard metamathematial argument whih under ertain

assumptions about ZF onludes that in fat PA ` Provable(F ): assume

that ZF is !-onsistent (f. [15℄,[7℄,[16℄); sine Provable(F ) is an arith-

metial �

1

statement, this yields that Provable(F ) is true and, by the

�

1

-ompleteness of PA, PA ` Provable(F ). On the one hand, we have

sueeded in establishing that PA ` Provable(F ). On the other hand,

at the metalevel of this argument we have used the power of ZF and

even the assumption of !-onsisteny of ZF . A total aount of the be-

liefs involved in this veri�ation proess should inlude this assumption,

whih, by the way, has never been and ould not possibly be proven by

any usual onsistent mathematial means.

In this paper we will try to demonstrate the following three points:

1. Some form of the reetion rule is a neessary part of an extendable and

stable veri�ation system. This will emerge as a natural orollary of the sound-

ness, extensibility, and stability assumptions (f. [8℄) about a veri�ation system.

Moreover, even the most basi proof heking sheme when V veri�es a proof of

F and then onludes that F itself holds requires reetion.

2. The traditional reetion based on the impliit provability prediate does

not provide a satisfatory justi�ation of formal veri�ation. It is well-known

that the impliit reetion in a given system V annot be veri�ed in V (f. [8℄,

[12℄, [1℄, [11℄). In partiular, this means that impliit reetion annot justify even

the basi proof heking by means of V without imposing additional unveri�able

assumptions on V . The present paper demonstrates that an iterative use of

reetion leads to the \reetion tower" of impliit reetion rules whih is not

omputably enumerable and annot be itself veri�ed by any formal tools. If one

takes into aount these hidden metamathematial osts of impliit reetion,

then no veri�able stable systems exist.

3. There is a veri�able reetion mehanism: \expliit reetion" (introdued

in the present paper), whih provides a foundational justi�ation of the veri�a-

tion proess. Expliit reetion requires more information in order to ertify the



premises of the reetion rule. However, this additional information is usually

available in real proesses of veri�ation; the old impliit provability model just

has not had a tool of its utilization. The expliit reetion irumvents the ree-

tion tower and provides the strit justi�ation of veri�ation. On the pratial

side, the paper gives spei� reommendations onerning the veri�ation of the

admissible rules and building a veri�able reetion mehanism for a theorem

proving system.

2 Veri�ation Systems

De�nition 1. Under a veri�ation system V we will understand a formal

theory satisfying the following onditions a) { d):

a) The underlying logi of V is either lassial or intuitionisti.

b) Proofhood in V is deidable, therefore theoremhood in V is omputably

enumerable. Note that by the well-known Craig Theorem the former follows from

the latter for an appropriate hoie of axiom system.

) V is strong enough to represent any omputable funtion and deidable

relation.

d) V has some sort of a numeration of syntax mehanism in the style of [8℄,

[1℄. In partiular, there is an injetive funtion rep whih maps syntati objets

like terms, formulas, �nite sequenes of formulas, sequents, �nite trees labeled

by sequents, derivation trees, et., into standard ground terms of V. The usual

notation used in this ase is psq = rep(s). The funtion rep and its inverse are

both omputable. We assume that V is able to derive formalizations of \usual"

ombinatory properties of the syntati objets at a level orresponding to the

�rst order intuitionisti arithmeti HA.

For the sake of notational simpliity we will use the same names for the

informal objets (relations, funtions, numbers) and for their formal ounterparts

(formulas, terms, ground terms) whenever unambiguous.

Examples of veri�ation systems: the �rst order arithmeti PA; the �rst

order intuitionisti arithmeti HA and its extensions; seond order arithmeti;

Martin-L�of type theory ITT ; formal set theory ZF ; et. Note that all the above

onditions on V have a purely onstrutive syntati harater. We have assumed

neither semanti properties of V (e.g. soundness with respet to some semantis),

nor metamathematial ones (onsisteny, !-onsisteny, et.).

De�nition 2. For any veri�ation system V there is a provably �

1

formula

Proof (x; y) in the language of V (alled a proof prediate) whih is obtained

by a natural formalization of the indutive de�nition of derivation in V (f.

[9℄, [8℄, [1℄). In partiular, Proof (pDq; p'q) holds i� D is a proof of ' in V.

The G�odel provability prediate Provable(y) is de�ned as 9xProof (x; y). We

will use the notation �' for Provable(p'q) and [[p℄℄' for Proof (p; p'q). For any

�nite set of V-formulas � by �� we mean the onjuntion of � 's for all  2 � .

De�nition 3. The onsisteny formula Consis(V) is de�ned as :�?, where ?

is the standard boolean onstant FALSE in V.



The informal meaning of Consis(V) is that there is no a proof of FALSE in V :

this is one of the equivalent formulations of the onsisteny assertion of V in the

language of V .

We will refer to the provability prediate �(�) as the impliit provability

prediate. The reason for hoosing this name lies in the fat that in the formula

�' (i.e. 9xProof (x; p'q)) the proof is represented impliitly by the existential

quanti�er, whih does not provide any spei�ation of this proof.

The impliit provability prediate has been studied extensively sine its in-

vention by G�odel in 1930. The milestone results here are the seond G�odel in-

ompleteness theorem (f. [15℄, [7℄)), whih states that

If V is onsistent, then 6` Consis(V);

and the L�ob theorem whih says that

V ` �'!' implies V ` ':

By the well-known Hilbert-Bernays lemma (f. [15℄,[7℄),

V ` ' implies V ` �':

This lemma an be onsidered as a justi�ation of the formalization rule '=�'

for V , whih states that every proof in V an be formalized in V . The proof of the

formalization rule is purely syntati and does not involve any extra assumptions

about V . Moreover, this rule an be formalized and proven inside V (f. [15℄, [7℄):

V ` �'! ��':

Below we will use one more fat about the provability operator �, usually at-

tributed to Hilbert, Bernays and L�ob (f.[15℄,[7℄):

V ` �('! )! (�'!� ):

3 Stability Equals Admissibility of Reetion Rule

The basi properties required from a veri�ation system are soundness, exten-

sibility, and stability ([8℄). We will disuss soundness in Setion 4. Extensibility

and stability will appear in this setion below.

De�nition 4. A rule of inferene R in the language of V is a omputable par-

tial funtion from a deidable set of lists of V-formulas to the set of V-formulas.

The usual notation for a rule of inferene R is �=', where � indiates the

argument of R (premises), and ' the value R(� ) of R (onlusion). For the

sake of notational onveniene we will not distinguish between a �nite list of

formulas � and one formula whih is the onjuntion of all formulas from �

when unambiguous. We would like to think that suh an abuse of notation will

be tolerated by a reader.



De�nition 5. A rule of inferene �=' in V is derivable if for any instane of

�=' there is a dedution in V of its onlusion from its premises.

A rule of inferene �=' in V is provable if V ` � ! '.

A rule of inferene �=' in V is admissible if V ` � implies V ` '.

Derivable rules is a system with the dedution theorem are provable. It is

also natural to assume that every provable rule is derivable sine there is a

standard dedution of ' from � (free premises) and � ! ' (has a derivation

without premises in V .). To a ertain extend the notion of provable rule is a

system-independent version of the notion of derivable rule.

It is immediate from the de�nitions that every provable rule of inferene

is admissible. None of the onverse impliations holds in a general ase. It is

important to notie that there are serious reasons to assume that derivable and

provable rules alone are not suÆient for an advaned system of automated

dedution and veri�ation (f. also [14℄).

Example 1. Here are examples of widely used admissible rules that are not prov-

able: '=8x' (generalization), '(x)='(y) (renaming of free variables) ::�=�,

where � is a �

1

sentene (Markov rule for intuitionisti arithmeti HA, f. [17℄),

disjuntive and existential rules for intuitionisti systems, '=�' (formalization),

�'!'=' (L�ob rule), �'=' (impliit reetion, for lassial and intuitionisti

arithmeti), et.

Extending V by adding rules provable in V does not hange the system. In

turn, stability of V with respet to admissible rules rises to a serious theoretial

and pratial problem sine some of the admissible rules annot be veri�ed inside

V .

De�nition 6. A rule of inferene �=' in V is veri�able in M if M ` �� !

�'. A rule in V is internally veri�able if it is veri�able in V.

Every admissible rule in V is veri�able in some suÆiently large theory M, but

not every one of them is veri�able in V .

Example 2. The rules generalization, renaming of free variables, formalization,

L�ob rule and internally veri�able. The rules impliit reetion, Markov rule,

disjuntive rule, existential rule are not internally veri�able.

We aept the understanding of stability as onservativity of extensions by

internally veri�able rules (f. [1℄, [8℄, [11℄, [14℄).

De�nition 7. System V

0

� V is onservative over V if for any formula  

V

0

`  implies V `  :

A system V is stable if for any rule �=' veri�able in V the system V + �=' is

onservative over V.

De�nition 8. By IRR(V) we denote the impliit reetion rule �'=' where

�' represents the provability of ' in V.



Example 3. Here is the standard example of a formal theory for whih the im-

pliit reetion rule is not admissible ([9℄): V = PA +:Consis(PA). This system

is onsistent, i.e. V 6` ?. On the other hand V ` �?, where � stands for prov-

ability in this partiular V .

Theorem 1. A veri�ation system V is stable i� the impliit reetion rule

IRR(V) is admissible in V.

Proof. Let V be a stable system. Let us onsider the rule R

'

onsisting of a single

pair (TRUE; '), where TRUE is the propositional onstant for true statements

in V . Sine V ` TRUE, we also have V ` �(TRUE). By stability of V , for all

';  if V ` �(TRUE)!�' and V + TRUE=' `  , then V `  . Equivalently,

for all ';  if V ` �' and V + ' `  , then V `  . Let  be '. Then V ` �'

implies V `  for all ', therefore IRR(V) is admissible in V .

Let now IRR(V) be admissible in V , i.e. V ` �' implies V ` ', and let �='

be a veri�ed rule, i.e. V ` �� ! �'. By an indution on the derivation in

V + �=' we prove that V + �=' `  implies V `  . The indution basis holds

beause V and V + �=' have the same set of axioms. The indution step in the

ase of a rule other than �=' is trivial. Let  be obtained in V+�=' by the rule

�=', i.e. there is spei� �

1

suh that �

1

= is a speial ase of the rule �=' and

V + �=' ` �

1

. By the indution hypothesis, V ` �

1

. By the formalization rule

in V , V ` ��

1

. Sine the rule �=' is veri�ed, we have V ` ��

1

!� , therefore

V ` � . By the rule IRR(V), V `  .

Note 1. Suh systems as LCF, Nuprl, HOL have the extension mehanisms

of tatis based on the representation of provable rules. This use of tatis an

be justi�ed inside the system and the stability with respet to tatis an be

established without any additional assumptions. A general ase of stability with

respet to all veri�ed rules (inluding the ones that are not provable) was onsid-

ered in [1℄, [8℄, [11℄, [14℄. It follows from Theorem 1 that the general stability of a

given veri�ation system V is equivalent to admissibility of the impliit reetion

rule in V .

4 Provability Tests and other Soures of Reetion

Stability of a veri�ation system with respet to veri�able rules is not the

only plae where reetion rule beomes neessary.

The basi proof heking sheme when V veri�es a proof of ' in V

1

and

then onludes that V

1

` ' requires some sort of reetion too. In the terms of

impliit provability this proof heking sheme is the rule

V ` �

1

' ) V

1

` ';

where �

1

stands for the provability prediate in V

1

. In partiular, when V

1

is V

itself this rule transforms into the usual impliit reetion rule IRR(V) for V .



A better internally veri�able theoretial desription of the veri�ation sheme

above is given in terms of expliit reetion in Setion 7.

Another lass of examples that need reetion has been shown to me by

Robert Constable and Stuart Allen. These examples are provided by omplete-

ness theorems and other provability tests whih play important role in theoret-

ial logi and mathematis and whih are now within the sope of interests of

advaned automated dedution systems.

De�nition 9. A provability test for V is a formula TEST(x) suh that V `

TEST(p'q)! �' for any formula '. V is stable with respet to provability

tests if for every provability test TEST(x) and every formula '

V ` TEST(p'q) yields V ` ':

. In other words, if ' passes a provability test then ' is provable in V.

Example 4. Formalized ompleteness and deidability theorems may be regarded

as provability tests. Indeed, a ompleteness theorem generally states that if '

is valid with respet to a ertain semantis then ' is provable. In its formalized

version suh a theorem is a formula VALID(p'q)! �' provable in V , and

one an take VALID(x) as TEST(x). A formalized deidability theorem usually

has a form V ` TEST(p'q) $ �', where TEST(x) is a formula desribing

the deidability algorithm working on the ode of ' and deiding whether ' is

provable.

Theorem 2. V is stable with respet to provability tests i� the impliit ree-

tion rule IRR(V) is admissible in V.

Proof. Let IRR(V) be admissible in V , and TEST(x) be a provability test. If

V ` TEST(`'') then V ` �' and, by the reetion rule, V ` '. Therefore V is

stable with respet to provability tests.

Let now V be stable with respet to all provability tests. In partiular, the

stability with respet to the trivial test when TEST(x) is Provable(x) means that

V ` �' yields V ` ' for every ', i.e. IRR(V) is admissible in V .

5 Metamathematial Cost of Soundness and Stability

In this setion we will �nd lower and upper bounds for the minimal metatheory

M apable of establishing soundness and stability of a given veri�ation system

V .

We will use the Turing progression as the standard sale to measure the

metamathematial strength of a given extension of the basi theory ([13℄). The

Turing progression V



�

of theories (f. [18℄, [10℄, [2℄) for V is obtained from V

by iterating the onsisteny assumptions along the Churh-Kleene system of

onstrutive ordinals �.

We onsider the �rst ! theories from the Turing progression.

V



0

= V ; V



n+1

= V



n

+ Consis(V



n

); V



!

=

[

n

V



n

:



If V is orret with respet to the standard model of arithmeti, then the fol-

lowing strit inlusions hold:

V



0

� V



1

� V



2

� : : : � V



!

:

Soundness was desribed in [8℄ as the ondition that \We must be entirely on-

vined that any proof of a theorem whih the system erti�es as orret should

indeed be so." A straightforward way to formalize soundness would be to assume

some sort of the semantis for V , to takeM powerful enough to express the no-

tion of truth for the V-formulas and to establish inside M a formal analogue of

the statement

for every sentene ' if ' is provable then ' is true:

This approah would require a fairly strongM. In partiular, one needs to extend

the language of V in order to write down formulas \' is true"; by the well-known

Tarski theorem there is no suh formula in the language of V itself.

In fat, in the proof heking ontext, a veri�ation system V deals with the

true values of formal statements of an espeially simple type, namely provable

�

1

sentenes [[t℄℄'. In this paper we assume that soundness of a veri�ation

system V means that all sentenes [[t℄℄' derivable in V are true.

Theorem 3. 1. V is onsistent i� V ` [[t℄℄' implies [[t℄℄',

2. V suÆes to establish 1.

Proof. If for all ' V ` [[t℄℄' implies [[t℄℄', then no false sentenes of the kind [[t℄℄'

is provable in V , therefore V is onsistent.

Suppose V is onsistent and let V ` [[t℄℄'. If [[t℄℄' were false, then V ` :[[t℄℄',

by �

1

ompleteness of V . This leads to a ontradition in V .

2. The straightforward formalization of the proof of 1 with the use of provable

�

1

ompleteness of V .

Corollary 1. Simple onsisteny of V is neessary and suÆient for soundness

of a veri�ation system V.

Now we will �gure out what metatheory an establish stability.

De�nition 10. By V is stable we understand the V-formula whih is the nat-

ural formalization of the stability property of V. By impliit reetion rule is

admissible in V we mean the natural formalization in the language of V of the

property that IRR(V) is admissible in V; we will denote this formula

8x(��x!�x):

Theorem 4.

V ` \V is stable$ impliit reetion rule is admissible in V"

Proof. The straightforward (though deliate) formalization of the proof of The-

orem 1.



Theorem 5. Stability of an !-onsistent veri�ation system is not provable in

this system.

Proof. By Theorem 4, stability is provable in V i� V ` 8x(��x ! �x). Let x

is the ode of ?. Then V ` ��?!�?. By L�ob's theorem, V ` �?, whih is

impossible for an !-onsistent V .

It follows from the above that the minimal metatheory for soundness and

impliit stability is

M = V + Consis(V) + 8x(��x! �x):

Theorem 6. If V is orret with respet to the standard model of arithmeti

then the metatheory for soundness and impliit stability stritly subsumes the

�rst ! steps of the Turing progression.

Proof. In order to establish V



!

�M onsider the formulas �

0

? = ?, �

n+1

? =

�(�

n

?). First of all we note that under the assumptions made about V the

formula Consis(V



n

) is provably equivalent in V to :�

n+1

? (f. [2℄). Indeed,

Consis(V



0

) is Consis(V), i.e. :�?. Then Consis(V



1

) is a formula stating that

V + Consis(V) 6` ?, i.e. V + :�? 6` ?. This is equivalent to V 6` :�?!? and

V 6` �?. Therefore, Consis(V



1

) is equivalent to :��?. Similar argument works

for n = 2; 3; 4; : : :.

Now we show how to derive all :�

n

?, n = 1; 2; 3; : : : in M. The ase n =

1 is overed by the assumption that M ` Consis(V), whih is equivalent to

M ` :�?, or M ` �?!? For n = 2 put x = ? in 8x(��x ! �x). Then

M ` ��? ! �?. Sine we have already had M ` �?!?, we onlude that

M ` ��?! ?, i.e. M ` :��?. A similar argument works for n = 3; 4; 5; : : :.

Thus

V



!

�M:

Now we will hek that V



!

6=M. Suppose

V



!

` Consis(V) ^ 8x(��x! �x):

By the ompatness argument, there is a natural number n suh that

V



n

` Consis(V) ^ 8x(��x! �x):

Sine V



!

�M, M proves the onsisteny of V



n

. Therefore

V



n

` Consis(V



n

);

whih is impossible by the seond G�odel inompleteness theorem for V



n

.



6 Metamathematial Cost of Impliit Reetion

In an !-onsistent veri�ation system V the rule of impliit reetion IRR(V)

is admissible, i.e. V ` �' yields V ` ' for any formula '. The most simple for-

malization of the admissibility property is the sheme ��'! �', where � 

stands for the formula of provability of  in V . A general proedure of inorpo-

rating impliit reetion rule into a veri�ation system V may be presented by

the following reetion tower of extensions of V (f. [12℄, [1℄, [11℄):

V

r

0

= V ; V

r

�+1

= V

r

�

+ IRR(V

r

�

); V

r



=

[

��

V

r

�

for a limit ordinal :

For the sake of simpliity we assume in this setion that V is sound with respet

to the standard model of arithmeti.

In this setion we will try to �gure out what natural metatheory is able to

establish the admissibility of all the reetion rules from the reetion tower.

De�nition 11. Impliit reetion priniple IRP(V) for a given system V is the

sheme of formulas

f�'!' j ' is a sentene of Vg:

Let us onsider Feferman`s progression of extensions of V by the impliit

reetion priniples ([10℄):

V

p

0

= V ; V

p

�+1

= V

p

�

+ IRP(V

p

�

); V

p



=

[

��

V

p

�

for a limit ordinal :

The system V

p

1

proves admissibility of impliit reetion in V

r

0

, i.e. the sheme of

formulas ��'!�'. In addition V

p

1

� V

r

1

, sine every instane of the rule �'='

in a proof in V

r

1

an be emulated by the axiom �'!'. Moreover, the inlusion

V

p

1

� V

r

1

an be established in V . Iterating this argument one an show that

V

p

�+1

is the theory apable of establishing admissibility of the impliit reetion

rule for V

r

�

.

How bad really is the reetion tower for V? The natural metatheory apable of

verifying the whole reetion tower is the limit of Feferman's progression V

p

�

for

all onstrutive ordinals �.

Proposition 1. ([10℄) The limit of V

p

�

for all onstrutive ordinals � equals

V + all true �

1

-sentenes:

It follows from the above that the natural metatheory for the reetion tower

is not omputably enumerable, and ould not possibly be veri�ed by any sound

mathematial means. It ontains, for example, the onsisteny statements for all

onsistent axiomati theories, among them Consis(ZF) (provided ZF is onsis-

tent).

In the next setion we desribe expliit reetion, whih is internally veri�able

and thus irumvents the reetion tower.



7 Expliit Reetion for Veri�ation Systems

An alternative way to represent provability in a logial setting has been sug-

gested in [3℄ { [6℄, where a basi theory of expliit provability was developed. The

key idea of this approah is to swith from the uniform but impliit presentation

of provability of ' as �' to a presentation of provability of ' by by a ertain

family of expliit proof terms [[t℄℄' (i.e. Proof (t; p'q)) depending on the ontext.

As it was shown in [5℄ and [6℄, every propositional property of the provability

operator (to the extend of the modal logi S4) an be represented by the family

of �nitely generated proof terms. Within this expliit provability approah some

old problems in theoretial logi were solved. In partiular, expliit provability

provided the intended provability semantis for intuitionisti logi by formalizing

Brouwer-Heyting-Kolmogorov semantis (the problem was open sine 1930) and

for the modal logi S4 (Goedel's problem, was open sine 1933).

In this paper we introdue a reetion mehanism based on expliit provabil-

ity. This mehanism ould help to avoid metamathematial osts of using the

impliit reetion without restriting real veri�ation apaities of a system.

Theorem 7. For every sentene ' suh that V ` ' there is a ground term t of

V suh that V ` [[t℄℄'.

Proof. Given V ` ' let D be a derivation of ' in V . Let t=`D'=rep(D). By the

assumptions on the funtion rep, [[t℄℄' holds. Sine V is able to represent all true

�

1

fats, V ` [[t℄℄'.

De�nition 12. The expliit reetion priniple ERP(V) is the sheme of for-

mulas [[t℄℄'!' for all sentenes ' and all ground terms t.

Theorem 8. (Provability of expliit reetion [3℄). For any ground term t and

formula '

V ` [[t℄℄'!':

Proof. We give a onstrutive proof of this lemma whih delivers an algorithm

for onstruting a derivation of [[t℄℄'! ' in V given ' and t. First of all, by

the proof heking proedure we alulate the truth value of [[t℄℄'. If this value

is TRUE, then the ground term t represents a derivation of ', from whih by

a straightforward reonstrution, we obtain the proof of [[t℄℄'!'. If the proof

heker on [[t℄℄' returns FALSE, then by the orresponding proedure we get the

proof of :[[t℄℄' in V . From that by the straightforward transformation, we get

the proof of [[t℄℄'!'.

Corollary 2. There is an algorithm whih given a formula ' and a ground term

t returns the ground term p suh that

V ` [[p℄℄([[t℄℄'!'):

De�nition 13. A rule �=' is expliitly veri�able in V if there is a total om-

putable funtion f suh that V ` [[y℄℄�! [[f(y)℄℄'.



Theorem 9.

1. Every derivable and every provable rule is expliitly veri�able.

2. Every expliitly veri�able rule is veri�able.

3. Every expliitly veri�able rule is admissible.

Proof. 1. There is a straightforward funtion behind every internal rule �= 

whih alulates the ode of a proof of  given the odes of proofs of �. A natural

formalization of this funtion in V gives a term f suh that V ` [[y℄℄�! [[f(y)℄℄ .

The same holds for all derivable rules. If a rule �=' is provable then V ` �!'.

By expliit formalization (Theorem 7), V ` [[t℄℄(� ! ') for some ground term

t. Let \�" be a total and omputable \appliation" funtion on proof odes,

spei�ed by the ondition

V ` [[x℄℄('! )! ([[y℄℄'! [[x � y℄℄ )

(f. [5℄, [6℄). In partiular,

V ` [[t℄℄(�!')! ([[x℄℄�! [[t � x℄℄');

whih yields V ` [[x℄℄�! [[t � x℄℄'.

2. From V ` [[y℄℄�! [[f(y)℄℄' it easily follows that V ` ��!�'.

3. Let V ` [[y℄℄�! [[f(y)℄℄' and suppose that V ` � . By Theorem 7, V ` [[t℄℄�

for some ground term t. Therefore V ` [[t℄℄� ! [[f(t)℄℄' and V ` [[f(t)℄℄'. By

Theorem 8, V ` [[f(t)℄℄'!'. Thus V ` '

De�nition 14. The expliit reetion rule ERR(V) is the rule [[t℄℄'=' for all

ground terms t and all sentenes '.

Theorem 10. The expliit reetion rule ERR(V) is expliitly veri�able in V.

Proof. By Theorem 8, V ` [[p℄℄([[t℄℄' ! ') for some ground term p. By the

same argument about omputable \appliation" as in the proof of the previous

theorem,

V ` ([[y℄℄[[t℄℄'! [[p � y℄℄'):

Corollary 3. The expliit reetion rule ERR(V) is admissible for every veri-

�ation system V.

De�nition 15. An extension V

0

of V is veri�ably equivalent to V if there is a

omputable funtion g of V suh that V ` [[x℄℄

0

 ! [[g(x)℄℄ , where [[x℄℄

0

 stands

for the formula \x is a proof of  in V

0

. In other words, for a veri�ably equivalent

extension V

0

there is an algorithm that transforms proofs in V

0

into proofs of the

same fats in V.

Theorem 11. An extension of a veri�ation system by an expliitly veri�ed

rule is veri�ably equivalent to the original system.



Proof. Let a rule �=' be expliitly veri�able in a veri�ation system V , i.e. there

is a omputable funtion f suh that V ` [[y℄℄�! [[f(y)℄℄'. Let V

0

be V + �='.

The funtion g(x) works as follows. It travels along the proof tree in V

0

oded

by x and alulates the ode of a proof tree in V of the same sentene (sequent).

If the observed node is a leaf node, then it orresponds to an axiom of V

0

, whih

is an axiom of V as well. In this situation g does not hange the the proof at all.

Let the observed node orrespond to an appliation of an internal rule �=�,

and let u be the values of g on the predeessors of the urrent node, i.e. V ` [[u℄℄�.

By Theorem 9, there is a omputable funtion h suh that V ` [[y℄℄�! [[h(y)℄℄�.

Substituting u for y we derive [[h(u)℄℄� in V . Let g map the observed node to

h(u).

Let the observed node orrespond to an appliation of the new rule �=', and

let v be the values of g on the predeessors of this node, i.e. V ` [[v℄℄� . By the

onditions of the theorem V ` [[y℄℄�! [[f(y)℄℄'. Substitute v's for y's, onlude

that V ` [[f(v)℄℄' and let g map the observed node to f(v).

Eventually, at the root node of the V

0

-proof (oded by) x the funtion g

returns the ode of a V-proof of the formula (sequent) previously proven by x.

8 Pratial Suggestions

As one an see, expliit reetion avoids some of the troubles inherent in impliit

reetion. Here is the list of pratial suggestions for the designers of veri�ation

systems.

1. Proof Cheking. Expliit reetion is used by default in proof heking

when one onludes that V has veri�ed a fat ' given that V ` [[t℄℄' for some

proof ode t. This sheme is theoretially orret and does not ontain any extra

hidden metamathematial osts. Here the use of expliit reetion should be

aknowledged.

2. Extendable Veri�ation Systems. Here the use of expliit reetion

may be twofold. Firstly, it appears in the assertion insertion mode (f. [8℄), when

it is established that V ` [[t℄℄' and then ' is stored as a veri�ed fat (i.e. a new

axiom) of V . We have nothing spei� to add here, sine this mode as presented

above (and in [8℄) already agrees with the expliit reetion reommendations.

Seondly, the expliit reetion appears in the rule insertion mode, when �=' is

veri�ed in V and then added to V as a new inferene rule. The expliit reetion

suggests verifying the rule �=' in V expliitly, i.e. by onstruting a omputable

funtion f suh that V ` [[y℄℄� ! [[f(y)℄℄'. By doing this we guarantee that

the resulting extension is veri�ed in the old system without any hidden meta

assumptions.

If the rule insertion mode uses expliit veri�ation only, then there is no

need to have a speial built-in reetion mehanism: provable stability

of the system is preserved by expliit veri�ation (Theorem 11).

Interestingly enough, there are substantial lasses of veri�ation systems where

the impliit veri�ation in a ertain sense yields the expliit one. For example, in



many intuitionisti systems V ` ��!�' implies V ` [[y℄℄�! [[f(y)℄℄' for some

omputable funtion f (f. [17℄). However, the proof of this fat itself annot

be formalized in V and its use in the rule insertion mode leads to some sort

of a reetion tower. Therefore, ever for the onstrutive systems the pratial

suggestion would be to use the expliit veri�ation, i.e. to establish V ` [[y℄℄�!

[[f(y)℄℄' diretly rather than to prove V ` ��!�' and then to apply a general

theorem of obtaining the expliit veri�ation from the impliit one; this involves

some hidden and potentially high metamathematial osts.

3. Advaned systems with built-in reetion mehanisms. There is a

number of systems whih have or intend to have suh mehanisms. The paper

[11℄ mentions several of them: FOL, NQTHM, HOL and Nuprl. At least

one more is oming: MetaPrl at Cornell University. Probably more systems

will join this set sine reetion arguments are often used in mathematial and

ommon reasoning (f. Setion 4). The existing impliit reetion mehanisms

in these systems lead to unneessary metamathematial osts (f. Setion 6).

For suh systems the idea of having expliit reetion (perhaps, along with the

impliit one) might be seriously onsidered, beause the expliit reetion an

be added to a system without any extra metamathematial assumptions at all

(Theorem 10).
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