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Gödel’s modal logic of provability.

Gödel (1933) introduced the modal logic S4 as the system axioma-

tizing provability in classical mathematics:

Axioms and rules of classical propositional logic

�(F→G)→(�F→�G) Normality

�F→F Reflexivity

�F→��F Transitivity

Necessitation Rule:
⊢ F

⊢ �F
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Gödel’s provability semantics for modality

Gödel also considered the interpretation of �F as

F is provable in Peano Arithmetic PA

and noticed that this semantics is inconsistent with S4.

Indeed, �(�F → F ) can be derived in S4. On the other hand,

interpreting � as the predicate Provable of formal provability in

Peano Arithmetic PA and F as falsum ⊥, converts this formula into

the false statement that the consistency of PA is internally provable

in PA:

Provable (Consis PA) .
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Gödel’s paper left open two questions

1. What is the precise provability semantics for S4?

‘a provability calculus without a semantics’

Was answered by the first author (1995) whose Logic of Proofs LP

provided a semantics of explicit proofs for S4.

2. What is the logic of formal provability Provable?

‘a provability semantics without a calculus’

Was answered by Solovay (1976), who found the logic of formal

provability GL.
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The provability logic GL

Axioms and rules of classical propositional logic

�(F→G)→(�F→�G) Normality

�(�F→F )→�F Löb Axiom

�F→��F Transitivity

Necessitation Rule:
⊢ F

⊢ �F
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Semantics of formal provability

Formal provability interpretation of a modal language is a mapping

∗ from the set of modal formulas to the set of arithmetical sentences

such that ∗ agrees with Boolean connectives and constants and

(�G)∗ = Provable G∗ .

Solovay’s completeness theorem:

GL ⊢ F iff for all interpretations ∗, PA ⊢ F ∗.
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Alternative Gödel’s format for provability

In his lecture in Vienna in 1938 Gödel mentioned a possibility of

building an explicit version of S4 with basic propositions ”t is a proof

of F”:

Proof (t, F )

This Gödel’s lecture remained unpublished until 1995. By that time

the full Logic of Proofs was already discovered by the first author.
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The principal observation of the Logic of Proofs

Explicit reflection Proof (p, F )→ F for each specific derivation p is

provable in PA. Indeed,

• If Proof (p, F ) holds, then F is evidently provable in PA, and so is

the formula Proof (p, F )→F .

• If ¬Proof (p, F ) holds, then it is provable in PA (since Proof (x, y)

is decidable) and Proof (p, F )→F is again provable.
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Logic of Proofs LP: the language

Proof polynomials are terms built from proof variables x, y, z, . . .

and proof constants a, b, c, . . . by means of two binary operations:

application ‘·’ and choice ‘+’, and one unary proof checker ‘!’.

Using t to stand for any proof polynomial and S for any sentence

letter, the formulas of the Logic of Proofs are defined by the

grammar

A = S | A→A | A ∧ A | A ∨ A | ¬A | t:A .
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Logic of Proofs LP

The standard axioms and rules of classical propositional logic

t:(F →G) → (s:F →(t·s):G) Application

t:F → !t:(t:F ) Proof Checker

s:F →(s+t):F , t:F →(s+t):F Choice

t:F →F Reflexivity

⊢ c:A, where A is an axiom and c is a proof constant

− Constant Specification Rule
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Realization of S4 in the Logic of Proofs LP

S4 is the forgetful projection of LP, i.e.,

1. The forgetful projection of LP is S4-compliant.

2. For each theorem F of S4 one can recover a witness (proof

polynomial) for each occurrence of � in F in such a way that the

resulting formula F r is derivable in LP.

Realization gives a semantics of proofs for S4.

S4 ⊢ F ⇔ ∃r LP ⊢ F r
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Provability semantics of LP

Interpretations respect Boolean connectives and

(p:F )∗ = Proof (p∗, F ∗).

Completeness theorem (by S.A.):

LP derives all valid logical principles in its language
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Joining languages GL and LP

Artemov (1994), Yavorskaya (1997), Nogina (2004) step by step

found the arithmetically complete logic of proofs and provability

(which is now called GLA) in the union of the original languages of

GL and LP.
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Justification Logic

Plato: Knowledge ∼ Justified True Belief

Hintikka, et al: F is known ∼ F holds in all possible situations.

This simplified approach leaves Justification off the picture. It al-

lowed to built an applicable formal theory of knowledge, but has

had a number of deficiencies, e.g., the Logical Omniscience Prob-

lem, Gödel’s Provability problem.

Justification Logic (Artemov, Fitting, Nogina, et al.):

t:F ∼ t is an adequate evidence for F.
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Joining Implicit and evidence-based knowledge.

Artemov and Nogina (2004):

S4LP = S4 + LP + t:F →�F (or t:F →�t:F ).

Multiple systems combining implicit knowledge ‘�F ’ and evidence-

based knowledge ‘t:F ’. A mathematical definition of Logical Omni-

science via proof complexity and a series of results showing that in

Justification Logic implicit knowledge is logically omniscient whereas

evidence-based knowledge is not logically omniscient (S.A., Kuznets).
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Epistemic models (Fitting, S.A., et al.)

Model is (W, R, E, 
), where

• (W, R) is an S4-frame;

• E is an evidence function: for each term t and formula F , E(t, F )

is a set of u ∈ W where t is a possible evidence for F . An evidence

function is monotonic

u ∈ E(t, F ) and uRv yield v ∈ E(t, F )

and has natural closure properties that agree with operations of LP.

• u
 t:F iff u
�F and u ∈ E(t, F ).
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Topological semantics for justifications - basic ideas

• based on Tarski’s topological semantics (�F )∗ = Interior(F )∗

• t’s denote measurements; there is a measurement function M

that for each t and F specifies an open set M(t, F ) of ‘possible

outcomes’ (not necessarily from F ∗);

• t:F ∼ ‘a set where measurement t confirms F’. This reading is

supported by the definition

(t:F )∗ = Interior(F ∗) ∩M(t, F )

• first consider systems w/o operations on measurements.
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System S4B0

S4B0 = S4 + x:F →F .

In this system there are no any assumptions about measurements;

they don’t even necessarily produce open sets of outcomes. The

definition of the measurement assertion is modified as follows:

(x:F )∗ = F ∗ ∩M(x, F )
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System S4B1

S4B1 = S4 + x:F →�F .

In this system measurement sets are still arbitrary (not necessarily

open); however, the measurement assertions are interpreted nor-

mally

(x:F )∗ = Interior(F ∗) ∩M(x, F )
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System S4B2

S4B2 = S4 + x:F →F + x:F →�x:F .

This system corresponds to the full operation-free version of S4LP.

The measurement sets are open, the measurement assertions are

interpreted normally

(x:F )∗ = Interior(F ∗) ∩M(x, F )
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Introducing operations

A natural topological interpretation for the whole of S4LP.

Operation Measurement Function

t:(F →G) → (s:F →(t·s):G) M(s, F →G) ∩M(t, F ) ⊆ M(s·t, G)

t:F → !t:(t:F ) M(t, F ) ⊆ M(!t, t:F )

s:F ∨ t:F →(s+t):F M(s, F ) ∪M(t, F ) ⊆ M(s+t, F )
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Conclusions

Justification logics can be provided with a topological semantics

which reads justification assertions t:F as

measurement t supports F.

This semantics is a natural extension of the Tarski topological se-

mantics for the modal logic S4.
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Future work

This is still work in progress. The next natural steps are to extend

this interpretation to establish completeness for the real topology

Rn. It looks this can be accomplished by the existing technique.
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