
Estonian Winter School in Computer Science, 2004

Proof Polynomilas

“For it is far better to know something
about everything than to know all about

one thing. This universality is the best.”

Blaise Pascal, Penses

(Lectures 5-6)

Sergei Artemov
Graduate Center of the City University of New York

BHK problem: find the intended provability semantics of intu-
itionistic logic satisfying BHK conditions:

• a proof of A∧B consists of a proof of A and a proof of B,

• a proof of A∨B is given by presenting either a proof of A or a proof of B,

• a proof of A→B is a construction which, given a proof of A returns a proof

of B,

• absurdity ⊥ is a proposition which has no proof, ¬A is A→⊥.

Kolmogorov 1985: “The paper [1932] was written with a hope that the

logic of problem solutions [SA: i.e. the logic of proofs] will eventually become

a permanent chapter in a logic course.”

The first step toward solution was made by Gödel in 1933.

Gödel (1933) reduced intuitionistic propositional logic Int to the
classical logic with built-in provability: !F ∼ F is provable

Gödel Provability Calculus, a.k.a. S4

1. Classical axioms and rules
2. !(F →G)→(!F →!G) (implicit application)
3. !F→F (reflexivity)
4. !F →!!F (implicit proof checker)
5. Internalization rule:

& F

& !F

Reflects the basic intuition of Provability as a logic operator.

Gödel’s embedding of Int into S4:

1. translate Int-formula F into a classical language !:
tr(F) = “box each subformula of F”,

2. test the translation in S4:
Int proves F ⇔ S4 proves tr(F)

(Gödel (1933), McKinsey & Tarski (1948))

The mission has not been accomplished though, since

S4 itself was left without an exact provability model

Int ↪→ S4 ↪→ ? ↪→ REAL PROOFS

Five Minute University (FMU) on Provability (Gödel, 1931):

Proof T (X, Y) ∼ “X is a proof of Y ”
Provable T (Y) = ∃XProof T (X, Y) ∼ Y is provable”
“T is consistent” = Consis T = ¬Provable T (⊥)
Reflection scheme: Provable T (ϕ) → ϕ

Consistency is a special case of reflection:
¬Provable T (⊥) = Provable T (⊥)→⊥

Incompleteness Theorem:
T does not prove Consis T

Reflection is not provable:
T does not prove Provable T (ϕ) → ϕ

Corollary Gödel (1933): S4 modality)= Provable(·)

Indeed, !(!F →F) is provable in S4:

!F →F - reflexivity axiom

!(!F →F) - by Internalization rule

However, under the interpretation of ! as Provable this

asserts that reflection is internally provable

Provable T(Provable T(F)→F)

which is false by Gödel’s Incompleteness Theorem.

Gödel’s problem: find an exact provability semantics of S4.

This loophole remained open for about 60 years.

• Source of problem: nonconstructive ∃. The premise in

∃xProof (x, F)→F does not provide a specific proof of F , this “x” may well

be a nonstandard number which is not a code of a derivation.

• Cure: explicit representation of proofs. Gödel, 1938/95, Strassen

& Artemov 1992 suggested considering format t:F (“t is a proof of F”) with

operations instead of quantifiers on proofs. Explicit reflection Proof (t, F)→F

for each specific t is internally provable. Indeed, if Proof (t, F) is true, then t

indeed is a proof of F and hence Proof (t, F)→F is provable then Proof (t, F)

is false therefore ¬Proof (t, F) is true and provable hence Proof (t, F)→F is

provable. This allows us to circumvent the Incompleteness Theorem here.

An appropriate class of BHK style operation on proofs is needed to capture

the whole of S4.

Principal difficulties:

• Finding the right format explicit provability. Gödel’s suggestion of 1938

remained unpublished till 1995.

• The problem was pronounced unsolvable by Montague in 1963.

• Taming Skolem functions and self-referentiality t :F (t) turned out to be

technically difficult. One has to give up many stereotypes coming from close

areas, such as modal and combinatory logic and λ-calculus, etc.

• A big help: Provability Logic with !F ∼ Provable(F) (Solovay, Boolos,

de Jongh, Visser, Magari, Sambin, Montagna, S.A., et al.). Modal logic

incompatible with S4. Applications mostly limited to Proof Theory. Its

mathematical methods helped a lot.

Gödel’s provability problem: reduces to finding a system of
proof terms that corresponds to S4.

If successful yields

• complete logical description of provability (Gödel’s problem)

• formalization of constructive semantics for intuitionistic logic (BHK-problem)

• a new tool in modal logics, λ-calculi, and their applications

• existential semantics for modal logic: !F = ∃p such that . . . (at last!)

• quantitative logic of knowledge (logical omniscience problem)

• much richer type systems for programming languages (referential types,

coding computations in types, etc.)

• etc.

Complete solution has been found recently.

Proof Polynomials

Basis for all invariant propositional operations on proofs

variables x, y, z, . . . ranging over proofs

constants a, b, c, . . . proofs of instances of logical axioms

“·” is application: applies s:(F →G) to t:F and returns (s · t):G

“!” is proof checking: computes !t a proof of t:F

“+” is union: takes union (concatenation) of two proofs

Logic of Propositions and Proofs

LP = classical logic + additional atoms p:F ,
(p is a proof polynomial and F is a formula)

A0. classical axioms and rules

A1. t:(F → G) → (s:F → (t·s):G) (application)

A2. t:F → F (explicit reflexivity)

A3. t:F → !t:(t:F) (proof checker)

A4. s:F → (s+t):F , t:F → (s+t):F (union)

R1. & c:A, where A ∈A0-A4, c is a proof constant. (axiom necessitation)

A close relative: typed combinatory logic CL.

Combinatory terms have dual meaning as typed terms and as derivations in a

Hilbert style proof system. Constant combinators stand for proofs of axioms:

kA,B : (A→(B→A)), sA,B,C : [(A→(B→C))→((A→B)→(A→C))]

Variables in CL denote unspecified proofs, the operation of application “·”
corresponds to the rule modus ponens

t:(F → G) → (s:F → (t·s):G)

The whole of CL corresponds to a fragment of S4 consisting only of formulas

of the sort

!A1 ∧ . . . ∧ !An→!B,

where A1, . . . , An, B do not contain modalities.

Examples of derivations

Derivation in S4 Derivation in LP
A→(B→A ∧ B)

!(A→(B→A ∧ B))
!A→!(B→A ∧ B)
!A→(!B→!(A ∧ B))
(!A ∧ !B)→!(A ∧ B)

Examples of derivations

Derivation in S4 Derivation in LP
A→(B→A ∧ B) A→(B→A ∧ B)

!(A→(B→A ∧ B))
!A→!(B→A ∧ B)
!A→(!B→!(A ∧ B))
(!A ∧ !B)→!(A ∧ B)

Examples of derivations

Derivation in S4 Derivation in LP
A→(B→A ∧ B) A→(B→A ∧ B)

!(A→(B→A ∧ B)) c:(A→(B→A ∧ B))
!A→!(B→A ∧ B)
!A→(!B→!(A ∧ B))
(!A ∧ !B)→!(A ∧ B)

Examples of derivations

Derivation in S4 Derivation in LP
A→(B→A ∧ B) A→(B→A ∧ B)

!(A→(B→A ∧ B)) c:(A→(B→A ∧ B))
!A→!(B→A ∧ B) x:A→(c·x):(B→A ∧ B)
!A→(!B→!(A ∧ B))
(!A ∧ !B)→!(A ∧ B)

Examples of derivations

Derivation in S4 Derivation in LP
A→(B→A ∧ B) A→(B→A ∧ B)

!(A→(B→A ∧ B)) c:(A→(B→A ∧ B))
!A→!(B→A ∧ B) x:A→(c·x):(B→A ∧ B)
!A→(!B→!(A ∧ B)) x:A→(y:B→((c·x)·y):(A ∧ B))
(!A ∧ !B)→!(A ∧ B)

Examples of derivations

Derivation in S4 Derivation in LP
A→(B→A ∧ B) A→(B→A ∧ B)

!(A→(B→A ∧ B)) c:(A→(B→A ∧ B))
!A→!(B→A ∧ B) x:A→(c·x):(B→A ∧ B)
!A→(!B→!(A ∧ B)) x:A→(y:B→((c·x)·y):(A ∧ B))
(!A ∧ !B)→!(A ∧ B) (x:A ∧ y:B)→((c·x)·y):(A ∧ B)

This was an easy ride, straightforward from S4.

Examples of derivations.
Some problems on the way from S4:

Derivation in S4 Derivation in LP
A→A ∨ B
!(A→A ∨ B)
!A→!(A ∨ B)
B→A ∨ B
!(B→A ∨ B)
!B→!(A ∨ B)
(!A ∨ !B)→!(A ∨ B)

Examples of derivations.
Some problems on the way from S4:

Derivation in S4 Derivation in LP
A→A ∨ B A→A ∨ B
!(A→A ∨ B) a:(A→A ∨ B)
!A→!(A ∨ B) x:A→(a·x):(A ∨ B)
B→A ∨ B
!(B→A ∨ B)
!B→!(A ∨ B)
(!A ∨ !B)→!(A ∨ B)

Examples of derivations.
Some problems on the way from S4:

Derivation in S4 Derivation in LP
A→A ∨ B A→A ∨ B
!(A→A ∨ B) a:(A→A ∨ B)
!A→!(A ∨ B) x:A→(a·x):(A ∨ B)
B→A ∨ B B→A ∨ B
!(B→A ∨ B) b:(B→A ∨ B)
!B→!(A ∨ B) y:B→(b·y):(A ∨ B)
(!A ∨ !B)→!(A ∨ B)

Examples of derivations.
Some problems on the way from S4:

Derivation in S4 Derivation in LP
A→A ∨ B A→A ∨ B
!(A→A ∨ B) a:(A→A ∨ B)
!A→!(A ∨ B) x:A→(a·x):(A ∨ B)
B→A ∨ B B→A ∨ B
!(B→A ∨ B) b:(B→A ∨ B)
!B→!(A ∨ B) y:B→(b·y):(A ∨ B)
(!A ∨ !B)→!(A ∨ B)

Orange parts are different, and we cannot just repeat the corre-
sponding S4 step. Operation + is needed!

Examples of derivations.
Some problems on the way from S4:

Derivation in S4 Derivation in LP
A→A ∨ B A→A ∨ B
!(A→A ∨ B) a:(A→A ∨ B)
!A→!(A ∨ B) x:A→(a·x):(A ∨ B)[→ (a·x + b·y):(A ∨ B)]
B→A ∨ B B→A ∨ B
!(B→A ∨ B) b:(B→A ∨ B)
!B→!(A ∨ B) y:B→(b·y):(A ∨ B)[→ (a·x + b·y):(A ∨ B)]
(!A ∨ !B)→!(A ∨ B)

Examples of derivations.
Some problems on the way from S4:

Derivation in S4 Derivation in LP
A→A ∨ B A→A ∨ B
!(A→A ∨ B) a:(A→A ∨ B)
!A→!(A ∨ B) x:A→(a·x):(A ∨ B)[→ (a·x + b·y):(A ∨ B)]
B→A ∨ B B→A ∨ B
!(B→A ∨ B) b:(B→A ∨ B)
!B→!(A ∨ B) y:B→(b·y):(A ∨ B)[→ (a·x + b·y):(A ∨ B)]
(!A ∨ !B)→!(A ∨ B) (x:A ∨ y:B)→(a·x + b·y):(A ∨ B)

Examples of derivations. All three operations are needed

Derivation in S4 Derivation in LP
!A→!A ∨ !B
!(!A→!A ∨ !B)
!A→!!A
!!A→!(!A∨!B)
!A→!(!A∨!B)
!B→!A ∨ !B
!(!B→!A ∨ !B)
!B→!!B
!!B→!(!A∨!B)
!B→!(!A∨!B)
!A∨!B→!(!A∨!B)

Examples of derivations. All three operations are needed

Derivation in S4 Derivation in LP
!A→!A ∨ !B x:A→x:A ∨ y:B
!(!A→!A ∨ !B) a:(x:A→x:A ∨ y:B)
!A→!!A x:A→!x:x:A
!!A→!(!A∨!B) !x:x:A→(a·!x):(x:A∨y:B)
!A→!(!A∨!B) x:A→(a·!x):(x:A∨y:B)
!B→!A ∨ !B
!(!B→!A ∨ !B)
!B→!!B
!!B→!(!A∨!B)
!B→!(!A∨!B)
!A∨!B→!(!A∨!B)

Examples of derivations. All three operations are needed

Derivation in S4 Derivation in LP
!A→!A ∨ !B x:A→x:A ∨ y:B
!(!A→!A ∨ !B) a:(x:A→x:A ∨ y:B)
!A→!!A x:A→!x:x:A
!!A→!(!A∨!B) !x:x:A→(a·!x):(x:A∨y:B)
!A→!(!A∨!B) x:A→(a·!x):(x:A∨y:B)
!B→!A ∨ !B y:B→x:A ∨ y:B
!(!B→!A ∨ !B) b:(y:B→x:A ∨ y:B)
!B→!!B y:B→!y:y:B
!!B→!(!A∨!B) !y:y:B→(b·!y):(x:A∨y:B)
!B→!(!A∨!B) y:B→(b·!y):(x:A∨y:B)
!A∨!B→!(!A∨!B)

Examples of derivations. All three operations are needed

Derivation in S4 Derivation in LP
!A→!A ∨ !B x:A→x:A ∨ y:B
!(!A→!A ∨ !B) a:(x:A→x:A ∨ y:B)
!A→!!A x:A→!x:x:A
!!A→!(!A∨!B) !x:x:A→(a·!x):(x:A∨y:B)
!A→!(!A∨!B) x:A→(a·!x):(x:A∨y:B)[→(a·!x+b·!y):(. . .)]
!B→!A ∨ !B y:B→x:A ∨ y:B
!(!B→!A ∨ !B) b:(y:B→x:A ∨ y:B)
!B→!!B y:B→!y:y:B
!!B→!(!A∨!B) !y:y:B→(b·!y):(x:A∨y:B)
!B→!(!A∨!B) y:B→(b·!y):(x:A∨y:B)[→(a·!x+b·!y):(. . .)]
!A∨!B→!(!A∨!B) x:A∨y:B→(a·!x+b·!y):(x:A∨y:B)

Comparing formats

Type (logic) derivation A→B, A & B

(plain types - propositions)

λ-derivation (Curry-Howard) s:(A→B), t:A & (s·t):B
(plain typed λ-terms, explicit, but no proof iterations allowed)

Modal derivation (in S4) !A∨!B & !(!A∨!B)
(provability iterates, but is implicit)

Proof polynomial derivation x:A∨y:B & (a·!x + b·!y):(x:A∨y:B)
(provability is explicit a:(x:A→x:A∨y:B)
and iterates freely) b:(y:B→x:A∨y:B)

Polymorphism: multi-conclusion proofs

Operation “+” yields multiple types:

Imagine we have s :A and t :B. Then both holds: (s + t) :A
and (s + t):B, i.e. term s + t has types A and B.

Suppose, we want to restrict explicit modal considerations to
single-conclusion proofs only. Then we will have some weird
identities like x:+ → ¬x:(+ ∧ +). This one, for example has a
forgetful projection !+ → ¬!(+ ∧ +) which is provably false in
any normal modal logic.

Realization Theorem: S4 proves F iff there is an assignment r

of proof polynomials to all !’s in F such that the corresponding
realization Fr is derivable in LP.

The part “if” is straightforward: given an LP-derivation replace proof poly-

nomials by empty !’s and get a derivation in S4. Part “only if” is not at all

easy. Let us try the “naive” approach: induction on a given derivation in S4.

Realization of S4 axioms is trivial. Step: modus ponens

A→B, A

B
By I.H., the premises are realizable (A→B)r and Ar. Since r clearly commutes

with →, we have Ar→Br and Ar. Therefore,

Ar→Br, Ar

Br

What is wrong with this “proof”?

Yes, you are right. In

Ar→Br, Ar

Br

those r’s in Ar → Br and in Ar depend on derivations in S4 of
A→B and of A respectively, and thus are different. In order to
make this step one has to reconcile realizations of A→B and A.
In any case, such a realization step cannot be “local” and should
depend on the whole derivation tree.

True realization algorithm uses so-called normal (i.e. cut-free)
derivations in S4.

Lifting Lemma: If A1, . . . , An, y1:B1, . . . , ym:Bm & F then

x1:A1, . . . , xn:An, y1:B1, . . . , ym:Bm & t:F

for some proof polynomial t(x1, . . . , xn, y1, . . . , yn).

Proof. Induction on the proof of F .

Base: If F is an axiom of LP, then & c:F for some constant c. If F is Ai, then

xi:Ai & xi:F . If F is yj:Bj, then yj:Bj &!yj:F .

Induction Step. If F is obtained by Modus Ponens from C →F and C, then,

by I.H., both s1 :(C → F) and s2 :C are provable from x1 :A1, . . . , xn :An, y1 :

B1, . . . , ym:Bm. Using application axiom we get s1s2:F . Suppose F is obtained

by Axiom Necessitation, i.e. F is c:A for some axiom A. Using proof checking

axiom get !c:c:A.

Example. Consider an LP derivation from hypotheses:

1. A, y:B & A, a hypothesis

2. A, y:B & y:B, a hypothesis

3. A, y:B & A→(y:B→(A ∧ y:B)), an axiom

4. A, y:B & y:B→(A ∧ y:B), by MP, from 1,3

5. A, y:B & A ∧ y:B, by MP, from 2,4

and its step by step lifting

1. x:A, y:B & x:A

2. x:A, y:B &!y:y:B

3. x:A, y:B & c:(A→(y:B→(A ∧ y:B)))

4. x:A, y:B & (c·x):(y:B→(A ∧ y:B)), by axiom c:(A→ . . .)→(x:A→(c·x):. . .)
5. x:A, y:B & (c·x·!y):(A∧y:B), by axiom (c·x):(y:B→ . . .)→(!y:y:B→(c·x·!y):. . .)

More examples

Usually there are multiple ways of lifting. Consider a “baby example”: lifting

of x:A & A. An easy guess gives lifting x:A & x:A. However, the general

lifting algorithm above brings somewhat different result. We have to take a

derivation x:A & A:

1. x:A & x:A→A

2. x:A & x:A

3. x:A & A

and internalize it:

1. x:A & c:(x:A→A)

2. x:A &!x:x:A

3. x:A & c:(x:A→A)→(!x:x:A→(c·!x):A)

4. x:A &!x:x:A→(c·!x):A
5. x:A & (c·!x):A

Corollaries of Lifting Lemma.

Constructive Necessication rule for LP:

& F

& p:F

Constructive Internalization:

A1, . . . , An & B

x1:A1, . . . , xn:An & t(x1, . . . , xn):B

Realization Theorem (S.A, 1995): S4 proves F iff there is an
assignment r of proof polynomials to all !’s in F such that the
corresponding realization Fr is derivable in LP.

The proof uses a cut-free formulation of S4, which is based on the Gentzen’s

system for the classical propositional logic. Here sequents are allowed to have

any finite number of formulas to the left and to the right of ⇒. Without loss

of generality we also assume that sequent axioms are of the form ⊥ ⇒ and

p ⇒ p for any propositional letter p. It is an easy exercise to show that an

axiom A ⇒ A for any A can be derived from atomic axioms above without

using the Cut rule.

Cut free proof system for S4 contains only two modal rules:

A,Γ⇒∆
(! ⇒)

!A,Γ⇒∆

and

!Γ⇒ A
(⇒ !)

!Γ⇒ !A

where (!{A1, . . . , An} = {!A1, . . . , !An}).

The important thing here is that polarities of !’s do not mix. In
particular, modalities introduced by the rule (⇒ !) are positive
ones, and remain such everywhere in the derivation.

All occurrences of !’s break into families of related ones.

A ⇒ A

!A ⇒ A

!A ⇒ !A

!A ⇒ !A ∨ !B

!A ⇒ !(!A ∨ !B)

B ⇒ B

!B ⇒ B

!B ⇒ !B

!B ⇒ !A ∨ !B

!B ⇒ !(!A ∨ !B)

!A ∨ !B ⇒ !(!A ∨ !B)

Replace each family NOT containing the rule (⇒ !) by a fresh proof variable.

A ⇒ A

x:A ⇒ A

x:A ⇒ !A

x:A ⇒ !A ∨ !B

x:A ⇒ !(!A ∨ !B)

B ⇒ B

y:B ⇒ B

y:B ⇒ !B

y:B ⇒ !A ∨ !B

y:B ⇒ !(!A ∨ !B)

x:A ∨ y:B ⇒ !(!A ∨ !B)

Replace each remaining family by a sum u1 + . . . + un of provisional variables

where n is the number of rules (⇒ !) in a given family.

A ⇒ A

x:A ⇒ A

x:A ⇒ v1:A

x:A ⇒ v1:A∨w1:B

x:A ⇒ (u1+u2):(v1:A∨w1:B)

B ⇒ B

y:B ⇒ B

y:B ⇒ w1:B

y:B ⇒ v1:A∨w1:B

y:B ⇒ (u1+u2):(v1:A∨w1:B)

x:A∨y:B ⇒ (u1+u2):(v1:A∨w1:B)

Pick a (⇒ !)-node containing no undeveloped (⇒ !)-nodes above it. Read

⇒ as &, evaluate ui (here v) by s($x) obtained by Internalization. Deposit all

constant specification to CS. Perform a substitution [ui/s($x)] in the tree.

A ⇒ A

x:A ⇒ A

x:A ⇒ v1:A

x:A ⇒ v1:A∨w1:B

x:A ⇒ (u1+u2):(v1:A∨w1:B)

B ⇒ B

y:B ⇒ B

y:B ⇒ w1:B

y:B ⇒ v1:A∨w1:B

y:B ⇒ (u1+u2):(v1:A∨w1:B)

x:A∨y:B ⇒ (u1+u2):(v1:A∨w1:B)

Here s($x) may be taken c·!x (cf. example above), where constant c satisfies

specification c:(x:A→A).

A ⇒ A

x:A ⇒ A

x:A ⇒ (c·!x):A

x:A ⇒ (c·!x):A∨w1:B

x:A ⇒ (u1+u2):((c·!x):A∨w1:B)

B ⇒ B

y:B ⇒ B

y:B ⇒ w1:B

y:B ⇒ (c·!x):A∨w1:B

y:B ⇒ (u1+u2):((c·!x):A∨w1:B)

x:A∨y:B ⇒ (u1+u2):((c·!x):A∨w1:B)

Lemma: a) Substitution [ui/s($x)] is always possible, since s($x) does not con-

tain provisional variables. b) The resulting node sequent becomes derivable

in LP (with ⇒ read as &).

Pick another (⇒ !)-node containing no undeveloped (⇒ !)-nodes above it

and repeat the above procedure of replacing a provisional variable by a term

containing no provisional variables.

A ⇒ A

x:A ⇒ A

x:A ⇒ (c·!x):A

x:A ⇒ (c·!x):A∨w1:B

x:A ⇒ (u1+u2):((c·!x):A∨w1:B)

B ⇒ B

y:B ⇒ B

y:B ⇒ w1:B

y:B ⇒ (c·!x):A∨w1:B

y:B ⇒ (u1+u2):((c·!x):A∨w1:B)

x:A∨y:B ⇒ (u1+u2):((c·!x):A∨w1:B)

Here w1 := d·!y, where d:(y:B→B).

A ⇒ A

x:A ⇒ A

x:A ⇒ (c·!x):A

x:A ⇒ (c·!x):A∨(d·!y):B

x:A ⇒ (u1+u2):((c·!x):A∨(d·!y):B)

B ⇒ B

y:B ⇒ B

y:B ⇒ (d·!y):B

y:B ⇒ (c·!x):A∨(d·!y):B

y:B ⇒ (u1+u2):((c·!x):A∨(d·!y):B)

x:A∨y:B ⇒ (u1+u2):((c·!x):A∨(d·!y):B)

Two more provisional variables to go. Convergence: w1 is no longer in the

picture.

Now we have to handle a provisional variable from a sum of those. Again we

use lifting to evaluate u1 := s(x).

A ⇒ A

x:A ⇒ A

x:A ⇒ (c·!x):A

x:A ⇒ (c·!x):A∨(d·!y):B

x:A ⇒ (u1+u2):((c·!x):A∨(d·!y):B)

B ⇒ B

y:B ⇒ B

y:B ⇒ (d·!y):B

y:B ⇒ (c·!x):A∨(d·!y):B

y:B ⇒ (u1+u2):((c·!x):A∨(d·!y):B)

x:A∨y:B ⇒ (u1+u2):((c·!x):A∨(d·!y):B)

Here s(x) := e·!(c·!x), where e:[(c·!x):A→(c·!x):A∨(d·!y):B].

A ⇒ A

x:A ⇒ A

x:A ⇒ (c·!x):A

x:A ⇒ (c·!x):A∨(d·!y):B

x:A ⇒ (s(x)+u2):((c·!x):A∨(d·!y):B)

B ⇒ B

y:B ⇒ B

y:B ⇒ (d·!y):B

y:B ⇒ (c·!x):A∨(d·!y):B

y:B ⇒ (s(x)+u2):((c·!x):A∨(d·!y):B)

x:A∨y:B ⇒ (s(x)+u2):((c·!x):A∨(d·!y):B)

Note that the node just developed became provable in LP despite the fact

that it still contains a provisional variable.

The last step of realization - variable u2 := t(y), where t(y) = f ·!(d·!y), and

f:[(d·!y):B→(c·!x):A∨(d·!y):B].

A ⇒ A

x:A ⇒ A

x:A ⇒ (c·!x):A

x:A ⇒ (c·!x):A∨(d·!y):B

x:A⇒(s(x)+t(y)):((c·!x):A∨(d·!y):B)

B ⇒ B

y:B ⇒ B

y:B ⇒ (d·!y):B

y:B ⇒ (c·!x):A∨(d·!y):B

y:B⇒(s(x)+t(y)):((c·!x):A∨(d·!y):B)

x:A∨y:B ⇒ (s(x)+t(y)):((c·!x):A∨(d·!y):B)

A more economical evaluation brings a shorter realization below with constant

specification a:(x:A→x:A∨y:B), b:(y:B→x:A∨y:B).

A ⇒ A

x:A ⇒ A

x:A ⇒ x:A

x:A ⇒ x:A∨y:B

x:A ⇒ [a·!x+b·!y]:(x:A∨y:B)

B ⇒ B

y:B ⇒ B

y:B ⇒ y:B

y:B ⇒ x:A∨y:B

y:B ⇒ [a·!x+b·!y]:(x:A∨y:B)

x:A∨y:B ⇒ [a·!x+b·!y]:(x:A∨y:B)

Intended provability interpretation of LP.

A proof predicate is a provably ∆1-formula Proof(x, y) such that
for every arithmetical sentence ϕ

PA & ϕ ⇔ for some n∈ω Proof(n,ϕ) holds

A proof predicate Proof(x, y) is normal if
1) (finiteness of proofs) For every proof k the set
T (k) = {l | Proof(k, l)} is finite. The function from k to the code
of T (k) as a finite set is computable.
2. (conjoinability of proofs) For any natural numbers k and l

there is a natural number n such that

T (k) ∪ T (l) ⊆ T (n).

The conjoinability indicates that normal proof predicates are
multi-conclusion ones.

For every normal proof predicate Proof there are computable
functions m(x, y), a(x, y), c(x) such that for all arithmetical for-
mulas ϕ,ψ and all natural numbers k, n the following formulas
are valid:

Proof(k,ϕ→ψ) ∧ Proof(n,ϕ)→Proof(m(k, n),ψ)

Proof(k,ϕ)→Proof(a(k, n),ϕ)

Proof(n,ϕ)→Proof(a(k, n),ϕ)

Proof(k,ϕ)→Proof(c(k),Proof(k,ϕ)).

An arithmetical interpretation ∗ of the LP -language has the fol-
lowing parameters:
• a normal proof predicate Proof with the functions
m(x, y), a(x, y), c(x) as above,
• an evaluation of propositional letters by sentences of arith-
metic, an evaluation of proof variables and proof constants by
natural numbers
• commutation conditions

(t·s)∗ = m(t∗, s∗), (t + s)∗ = a(t∗, s∗), (!t)∗ = c(t∗),

(t:F)∗ = Proof(t∗, F ∗).

Under an interpretation ∗ a proof polynomial t becomes the nat-
ural number t∗, an LP -formula F becomes the arithmetical sen-
tence F ∗. A formula (t:F)∗ is always provably ∆1.

Completeness Theorem

The following are equivalent
1. LP & F with constant specification CS
2. CS∗ |= F ∗ for any interpretation ∗
3. PA & CS∗→F ∗ for any interpretation ∗

Other adequacy theorems for LP (S.A., 1994-97):

Functional completeness:
Every propositionally definable invariant operation on proofs is a
proof polynomial.

Logical Completeness:
LP derives all valid identities in its own language.

Corollary: Gödel’s, BHK problems

The foundational picture now looks like this:

Int ↪→ S4 ↪→ LP ↪→ REAL PROOFS

and all these embedding are exact.

Gödel’s paper of 1933 left open two problems:

• the intended semantics of Gödel’s provability calculus S4

• the modal logic of formal provability predicate.

The latter problem was solved in 1976 by R. Solovay who showed that the

modal logic GL (also known under the names G, L, K4.W, PRL) axiomatized

all propositional properties of the formal provability predicate. The former

problem has found its solution via Proof Polynomials and explicit provability.

Those two mathematical models of provability complement each
other and together cover all areas of applications.

Implicit provability model: logic GL.

1. Classical axioms and rules
2. !(F →G)→(!F →!G) (implicit application)
3. !(!F→F)→!F (Löb axiom)
4. !F →!!F (implicit proof checker)
5. Internalization rule:

& F

& !F

Complete with respect to interpretation !F as Provable(F)
(Solovay, 1976). Represents Incompleteness Theorem. Applica-
tions in Proof Theory.

Explicit provability model: logic S4/ LP.

A long desired joint logic of propositions and proofs, gives BHK
semantics to intuitionistic logic. Addresses uniformly issues in
CS/AI: logics of knowledge, verification, typed languages and
theories, λ’s. Generalizes the Curry-Howard Isomorphism, etc.

Is not capable of representing the second Incompleteness Theorem (thus not

a replacement to the Implicit Model).

Other developments
0. Basic Logic of Proofs = operation free versions for major classes of proof

predicates, pre-LP studies. Artemov, T. Strassen;

1. Functional Logic of Proofs FLP. V. Krupski;

2. Logical models of referential data structures. V. Krupski, Artemov;

3. Joint Logic of Proofs and Provability LPP. Tanya Sidon-Yavorskaya;

4. Models for LP. Mkrtychev;

5. Realizability of Int in the +-free fragment of LP. Kopylov, Fitting;

6. Explicit counterpart of modal logic S5. Artemov, Kazakov, Shapiro;

7. Explicit counterparts of major normal modal logics K, K4, T. Brezhnev;

8. Complexity questions in Logic of Proofs. Kuznets;

9. First order logic of proofs. Artemov, Sidon-Yavorskaya, Yavorsky;

10. Logic with quantifiers over proofs. Yavorsky;

11. Disjunctive Property, complexity of the reflexive fragment. N. Krupski;

12. Reflexive λ-calculus (natural deduction system for LP). Artemov, Alt,

Bonelli;

13. Explicit provability in verification theory. Artemov;

14. Reflection in automated deduction systems. Alen, Artemov, Barzilay,

Constable, Hickey, Nogin;

15. Kripke semantics for LP. Fitting;

16. Tableau proof system for LP. Renne;

17. Reflexive Combinatory Logic. Artemov;

18. Game semantics for LP. Paquit, Renne;

19. Epistemic Logic with justifications. Fitting, Paquit;

20. Intuitionistic Logic of Proofs. Artemov, Kanazawa, Iemhoff.

Today we consider some of those developments:
Joint logic of provability and proofs LPP by Sidon-Yavorskaya;
Reflexive Combinatory Logic RCL by S.A..

Joint Logic of Proofs and Provability LPP.

Two different models of probability originated in Gödel’s work of 1933: ex-

plicit S4/LP and implicit GL are compatible since they are both based on the

same arithmetical proof predicates. The task of merging these two models

into one comprehensive system was accomplished by Tanya Sidon-Yavorskaya.

The language of logic of proofs and provability LPP (which has a nickname

GL+LP) is the extension of LP-language by the modality ! and two monadic

function symbols ⇓! and ⇑! for generating proof polynomials

Axioms for Logic of Proofs and Provability LPP naturally split into two

groups. The first group General describes relations between provability and

proof predicates. The second group Operation Specification contains axioms

specifying the operations on proofs.

System LPP∅.

Axioms: I. General II. Operation Specification
1. axioms of GL 5. axioms of LP
2. t:A→A 6. t:!A→(⇓! t):A
3. t:A→!(t:A) 7. t:A→(⇑! t):!A
4. ¬(t:A)→!¬(t:A)

Rules: modus ponens and two modal rules

A, A→B
B

A
!A

!A
A

The system LPP is the closure of LPP∅ by axiom necessitation:
c:A, where c is a proof constant, A is one of the axioms 1.–7.

Main results concerning LPP: (Tanya Sidon-Yavorskaya,1997).

Decidability, arithmetical soundness and completeness, functional
completeness, internalization, etc.

Completeness Theorem

The following are equivalent
1. LPP & F with constant specification CS
2. PA + CS∗ & F ∗ for any interpretation ∗

Reflexive Combinators (S.A.).

Characteristic features of the Reflexive Combinatory Logic RCL are the Com-

binatory Logic format, a Church style rigid typing, the implicational intuition-

istic logic on level 0, and the Internalization Property, which immediately

captures the usual CL and much more.

k:[A→(B→A)] old combinator k

s:[(A→(B→C))→((A→B)→(A→C))] old combinator s

d:[t:F → F] DENOTATE

o:[t:(F → G) → (s:F → (t·s):G)] INTERPRETER

c:[t:F → !t:(t:F)] CODING

Computational semantics.

Standard set theoretical semantics of types, e.g. functional types are in-

terpreted as sets of total functions. Some of the objects have constructive

counterparts names, e.g. functions - programs that compute them. t:F is

interpreted as a name (program) of type F . A more pedantic eye should

already figure out that t :F is rather a singleton, i.e. a single element set

containing the name (program) above.

d:[t:F → F] - realizes a fundamental denotational correspondence
name - object, in particular, program - function.

o:[t:(F → G) → (s:F → (t·s):G)] represents an interpreter, which maps
a program t and an input s to the result t · s

c:[t:F → !t:(t:F)] maps a program into its code (alias, name, etc.).
Examples: t is a bytecode of a function, !t - its ML code, !!t its
higher level code with an interpreter to ML, !!!t - its file name
(something like deepblue7-12.exe), !!!!t its coding binary number
in the library of programs, etc.

Reflexive Combinatory Logic RCL

(Official formulation.)

Language of RCL, well-defined formulas of RCL, and derivable formulas of

RCL are all defined by a joint induction as follows

1. Language of RCL contains propositional variables p0, p1, . . . and a connec-

tive →. Each propositional formula is also an atomic formula.

2. If S and T are formulas then S→T is also a formula.

3. For each formula F we fix it own set of proof variables x0, x1, . . . “of type

F”. If x is a variable of type F , then x:F is a formula. Here and below “t:F

is a formula” and “t is a term of type F” are identical.

4. Each axiom A1-A6 below is a formula

A1. For each formulas A and t:A there is an axiom

t:A→A.

A2. For each formula A→(B→A) there is a constant k and an axiom

k:(A→(B→A)).

A3. For each formula (A → (B → C)) → ((A → B) → (A → C)) there is a
constant s and the axiom

s:[(A→(B→C))→((A→B)→(A→C))].

A4. For each formula t:A→A there is a constant d and an axiom

d:(t:A→A).

A5. If A, B, u:(A→B), v:A are formulas then (u · v):B is again a formula. For
formula u:(A→B)→(v:A→(u · v):B) there is a constant o and an axiom

o:[u:(A→B)→(v:A→(u · v):B)].

A6. If A and t:A are formulas then !t:t:A is a formula. For formula t:A→ !t:t:A
there is a constant c and an axiom

c:(t:A→ !t:t:A).

5. Every formula proven from a given hypotheses is a well-defined formula.
Hypotheses — arbitrary finite multiset Γ of formulas. A derivation from Γ is
defined in the usual way with the only rule modus ponens:

A→B, A

B

An obvious semantics for RCL is the provability one inherited from LP.

Combinatory terms are understood as proofs in (for example) PA or in HA.

A formula t:F is interpreted as Proof (t, F), conbimators k,s,d,o,c are terms

corresponding to proofs of arithmetic instances of A2-A6.

RCL can be recast in the usual typed style. Well-defined formulas become

types, objects t formulas t :F — combinatory terms of type F , constants

– constant combinators of a given type, hypohteses — context, formulas

derivable from Γ became nonempty types in a context Γ, and so on

RCL contains the implicative intuitionistic logic, the usual combinatory logic.

Example: RCL emulates application:

u:(A→B), v:A

(u·v):B
.

1. u:(A→B) a hypothesis

2. v:A a hypothesis

3. o:[u:(A→B)→(v:A→(u · v):B)] 5

4. o:[u:(A→B)→(v:A→(u · v):B)]→ [u:(A→B)→(v:A→(u · v):B)] 4

5. u:(A→B)→(v:A→(u · v):B) from 3,4

6. v:A→(u · v):B from 1,5

7. (u · v):B from 2,6

Example of a derivation in RCL without hypotheses.

Let f:A be an axiom 2-6.

1. f:A an axiom

2. c:(f:A→ !f:f:A) 6

3. c:(f:A→ !f:f:A)→(f:A→ !f:f:A) 4

4. f:A→ !f:f:A 2,3

5. !f:f:A 1,4

Theorem. RCL enjoys Internalization: if A1, . . . , An & B then
for any variables x1, . . . , xn of corresponding types there is a term
t(x1, . . . , xn) such that x1:A1, . . . , xn:An & t(x1, . . . , xn):B.

Proof. Induction on the derivation A1, . . . , An & B. Given hypotheses Γ′

= {x1:A1, . . . , xn:An}. If B is Ai then put t := xi. If B is an axiom 1 then put

t equal to the constant d of type t:A→A and use 4. If B is an axiom 2-6 of

sort f :A then put t equal !f and then follow the last example. Since !f :f :A

is derivable without hypotheses it is also derivable from Γ′. Finally, let B be

obtained by modus ponens from A→B and A. By the induction hypothesis,

Γ′ & p($x):(A→B) and Γ′ & q($x):A. Put t equal to p($x)·q($x) and use the first

example above to show that Γ′ & t:B.

Exercise 50. Given an S4-derivation x:A, B & A ∧ B:
1. x:A, B & x:A, a hypothesis
2. x:A, B & x:A→A, an axiom
3. x:A, B & A, by MP, from 1,2,
4. x:A, B & B a hypothesis
5. x:A, B & A→(B→A ∧ B), an axiom
6. x:A, B & B→A ∧ B, by MP, from 3,5
7. x:A, B & A ∧ B, by MP, from 4,6,
find a proof polynomial t(x, y) and a derivation in LP x:A, y:B & t(x, y):(A∧B).

Exercise 51. Find S4 derivations and realizations by proof polynomials for
1. !A → !(B → !A)
2. !A ∧ !B → !(!A ∧ !B)
3. (!A ∨ !B) → !(!A ∨ B)
4. (!A ∨ !¬B) → !(B → !A)

Exercise 52. Show that the following subsystem of LP also enjoys Inter-
nalization: Language: →, ·, !, proof constants and variables, propositional
variables.
A0. axioms and rules of implicational intuitionistic logic

A1. t:(F → G) → (s:F → (t·s):G) A3. t:F → !t:(t:F)
R1. & c:A, where A ∈A0,A1,A3, c is a proof constant.

Exercise 53. Show that LP is not complete with respect to the standard
proof predicate “form a textbook” based on the gödel numbering. Hint: note
that in the usual gödel numbering a code of a proof is always longer than
codes of each of its formulas.

Exercise 54. Consider the +-free fragment of LP, the system LP−. It is
obviously sound w.r.t. the class F of single conclusion proof system (i.e.
the ones where each proof proves a single theorem). Show that LP− is not
complete w.r.t. F. It suffices to find a formula P in the language of LP−
such that P holds for each single conclusion proof system and fails for some
multi conclusion ones.

Exercise 55. Does the Deduction Theorem hold for LP? for LP−? for a
subsystem of LP from Exercise 52?

Exercise 56. Show that no formula of sort t:F is derivable in LP without
using rule R1.

Exercise 57. Establish the Internalization for the Sidon-Yavorskaya logic of
proof and provability LPP.

Exercise 58. Consider the Löb axiom !(!F→F)→!F from GL and LPP.
Find a proof polynomial t(x) of LPP such that LPP & x:(!F→F)→ t(x):F .

Exercise 59. Show that the explicit version of the Löb axiom x:(y:P→P)→ t:P
is not provable in LPP for any proof term t (here x, y are proof variables, P
a propositional variable). Hint: Plug ⊥ for P .

Exercise 60. It is not the case that each formula F can be lifted internally,
i.e. that for each formula F there is a proof polynomial p such that F →p:F
holds in LP. Show that if F is a ∧,∨ combination of formulas of sort t:G,
then F can be lifted internally. Hint: induction on F .

Exercise 61. Show that a formula !P where P is a propositional vari-
able cannot be lifted internally in LPP, i.e. for no proof term t a for-
mula F = !P → t :!P is derivable in LPP. Hint: Consider an interpreta-
tion ∗ which thus maps P to 0 = 1. Then (!P)∗ is an arithmetical formula
¬Consis(PA). Suppose the arithmetical translation of the whole F (which is
¬Consis(PA)→Proof (t∗,¬Consis(PA))) is derivable in PA. Consider a theory

T=PA+¬Consis(PA). In this theory the formula Proof (t∗,¬Consis(PA)) is
provable. This formula is a ground ∆1 formula hence it is provable in PA
itself (otherwise both PA and T prove its negation). Now, get a contradiction
with the Second Incompleteness Theorem.

Exercise 62. Prove in LPP the following constructive versions of the proof
checking principle: x:F → t(x):!F and x:F → !s(x):F for appropriate proof
terms t(x) and s(x).

Exercise 63. Is !F →!s(x):F provable in LPP for an appropriate proof term
t(x)?

Exercise 64. Derive in LPP a principle t:F → !F . Show that axiom 3 of
LPP is redundant.

Exercise 65. Show that LPP proves x:!P → !t(x):P for some proof term
t(x). Does LPP prove !x:P →u(x):!P for some proof term u(x)?

Exercise 66. Derive in RCL all axioms of the implicational intuitionistic
logic.

Exercise 67. Verify soundness of RCL with respect to the standard prov-
ability interpretation in the intuitionistic arithmetic HA. Prove that if RCL
proves F then HA proves F ∗ for each arithmetical interpretation ∗.

Exercise 68. Establish conservativity of RCL with respect to Int: if a purely
propositional formula is derivable in RCL, then it is derivable in Int itself.
Hint: use de Jongh’s arithmetical completeness theorem: if F is not derivable
in Int then HA does not prove F ∗ for some arithmetical interpretation ∗.

Exercise 69. Establish the Deduction Theorem for the Reflexive Combina-
tory Logic RCL.

Exercise 70. Show that P → t:P where P is a propositional variable is not
derivable in RCL for any term t.

Exercise 71. Is Internalization Rule for RCL invertable? Let x:A & t(x):B

hold in RCL and x do not occur in A, B. Could we conclude that A & B also

holds in RCL?

