
The impossibility of definitive
solutions for some games

Sergei Artemov
The CUNY Graduate Center

365 Fifth Avenue, 4319

New York City, NY 10016, USA

sartemov@gc.cuny.edu

April 22, 2010

Abstract
In his dissertation of 1950, Nash based his concept of solution to a game on the

principles that “a rational prediction should be unique, that the players should be
able to deduce and make use of it.” In this paper, we address the issue of when such
definitive solutions are possible.

We assume player rationality at least as strong as Aumann’s rationality. By
formalizing Nash’s reasoning, we show that any justified definitive solution to a game
is a Nash equilibrium, hence games without Nash equilibria cannot have definitive
solutions under any notion of rationality. However, each strategic game with Nash
equilibria admits a justified definitive solution under some notion of rationality. For
Aumann’s rationality, no game with two or more Nash equilibria can have a definitive
solution whereas some games with a unique Nash equilibrium have definitive solutions
and some do not.

1 Introduction

Some classical games, such as Prisoner’s Dilemma or Centipede (cf. [10]), have definitive
solutions which follow logically from game description and plausible principles of ratio-
nality. These solutions are justified by rigorous reasoning involving an epistemic notion
of knowledge1. Here is a quote from Nash’s dissertation [9]2 which raises the issue of a
deductive approach to solving games:

1Such reasoning could in principle be carried out in an appropriate formal system of the logic of knowl-
edge. By the same token, the Pythagorean theorem, which is usually proven rigorously but informally,
could be completely formalized and derived in an axiomatic geometry.

2We are indebted to Adam Brandenburger for this quote.
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We proceed by investigating the question: what would be a rational prediction
of the behavior to be expected of rational[ly] playing the game in question? By
using the principles that a rational prediction should be unique, that the players
should be able to deduce and make use of it, and that such knowledge on the
part of each player of what to expect the others to do should not lead him to
act out of conformity with the prediction, one is led to the concept of a solution
defined before.

Another quote from [9] explains this issue even further:

... we need to assume the players know the full structure of the game in order
to be able to deduce the prediction for themselves.

The main goal of this paper is to investigate when “a unique rational prediction” that
“the players should be able to deduce and make use of” is possible. Such definitive solu-
tions exist for extensive games: by Aumann’s Rationality Theorem ([2]), each generic3

extensive game with the standard game-theoretical assumptions of common knowledge
of the game and rationality (CKGR) has a unique Aumann-rational solution: the back-
ward induction solution. Moreover, this solution logically follows from the game rules: [7]
provides an example showing in full detail how to derive a definitive solution to a perfect
information game from game description and plausible principles of rationality.

We consider games from the point of view of epistemic logic – a well-established mathe-
matical foundation of reasoning involving notions such as knowledge. For the reader’s sake,
the exposition is not formal, but can be completely formalized in an appropriate class of
logical languages.

2 Definitions, assumptions, preliminary remarks

We consider games4 with n players 1, 2, . . . , n. A strategy profile

σ = {σ1, σ2, . . . , σn}

is a collection of strategies σi for players i = 1, 2, . . . , n. Each strategy profile σ uniquely
determines the outcome in which each move is made according to σ. We assume that
everyone who knows the game can calculate i’s payoff as determined by σ.

A strategy profile σ is a Nash equilibrium if, given strategies of the other players, no
player can profitably deviate (cf. [10] for rigorous definitions).

We assume that the rules of the game and player rationality can be described in some
formal mathematical language which includes an appropriate amount of logic and let

GAME RULES
3A game is generic if for any given player, payoffs of different outcomes are all different.
4Either in strategic or extensive form.
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be such a description. In principle, GAME RULES may be an infinite set of assumptions,
but for simplicity we assume that GAME RULES is one, possibly very long, sentence which
contains a comprehensive game description.

The use of knowledge operators5 (cf. [6])

K1,K2, . . . ,Kn

for players 1, 2, . . . , n in this paper is mostly typographical and is intended to make informal
reasoning about knowledge more visual. We assume the knowledge of the game, i.e.,
each player knows the rules of the game:

Ki[GAME RULES] for each i = 1, 2, . . . , n.

An informal account of Aumann’s notion of rationality can be found in ([2]). Aumann
states that for a rational player i,

there is no strategy that i knows would have yielded him a conditional payoff ...
larger than that which in fact he gets.

A formal logical account of Aumann’s rationality can be found, e.g., in [5, 7] and we adopt
this approach. Strategy σi for player i is Aumann-rational if there is no other strategy
σ′

i which i knows to strictly dominate σi on all other players’ strategies deemed possible by
i. Player i is Aumann-rational at the strategy profile σ = {σ1, σ2, . . . , σn} if σi is Aumann-
rational for i at σ. Technically, rationality of player i is a proposition ri which either holds
or does not hold at a strategy profile {σ1, σ2, . . . , σn}.

There are stronger notions of rationality, including refinement methods (cf. [10]). By
rationality, we mean a predicate ri which is at least as strong as Aumann’s rationality at
any strategy profile {σ1, σ2, . . . , σn}:

Rationality ⇒ Aumann’s rationality.

Naturally, it is assumed to be commonly known that a rational player i does not choose
irrational strategies, hence for a game with rational players, outcomes marked as irrational
by at least one player are impossible.

As a convenient formalization feature, we assume that each strategy σi is completely
specified by a corresponding logical sentence Si stating that

player i has committed to strategy σi.

We assume that sentences Si and S ′
i corresponding to different strategies σi and σ′

i are
known to be incompatible: each player knows that GAME RULES yields that Si and S ′

i

cannot occur together:

Ki[GAME RULES → ¬(Si ∧ S ′
i)] for each i = 1, 2, . . . , n.

5We assume the standard models of knowledge: Aumann structures or S5 Kripke models, cf. [6].
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A strategy profile σ = {σ1, σ2, . . . , σn} is a definitive solution of the game if it logically
follows from the description of the game and rationality, i.e.,

GAME RULES → (S1 ∧ S2 ∧ . . . ∧ Sn) (1)

for sentences S1, S2 . . . Sn corresponding to σ1, σ2, . . . , σn. Since different strategy profiles
are incompatible, the definitive solution, if it exists, is unique.

A definitive solution σ = {σ1, σ2, . . . , σn} is justified if each player knows that the
choice of σ1, σ2, . . . , σn logically follows from the description of the game. We formalize the
justified solution requirement by assuming

Ki[GAME RULES → (S1 ∧ S2 ∧ . . . ∧ Sn)] for each i = 1, 2, . . . , n. (2)

As yet another example, consider the following War and Peace Dilemma, WPD,
introduced in [1].

Imagine two neighboring countries: a big powerful B, and a small S. Each
player can choose to wage war or keep the peace. The best outcome for both
countries is peace. However, if both countries wage war, B wins easily and
S loses everything, which is the second-best outcome for B and the worst for
S. In situation (warB, peaceS), B loses internationally, which is the second-best
outcome for S. In (peaceB,warS), B’s government loses national support, which
is the worst outcome for B and the second-worst for S.

The ordinal payoff matrix of this game is then

warS peaceS

warB 2,0 1,2

peaceB 0,1 3,3 .

There is one Nash equilibrium,
{peaceB, peaceS}. (3)

Let us assume Aumann’s rationality and CKGR. We claim that strategy profile (3) is the
justified definitive solution to WPD. Indeed, S has a dominant strategy peaceS and as a
rational player, has to commit to this strategy. This is known to B, since B knows the
game and is aware of S’s rationality. Therefore, as a rational player, B chooses peaceB.
This reasoning can be carried out by any intelligent player (cf. Section 5.1). Hence both
players know that the solution {peaceB, peaceS} logically follows from the game description
(which includes CKGR).
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3 Formalizing Nash reasoning

Theorem 1 Any justified definitive solution is a Nash equilibrium.

Proof. Let σ = {σ1, σ2, . . . , σn} be a justified definitive solution of the game, and let
sentences S1, S2, . . . , Sn correspond to strategies σ1, σ2, . . . , σn. Suppose σ is not a Nash
equilibrium, hence for some player i, the choice of his strategy in σ is less preferable to
some other choice given the other player’s strategies. Without loss of generality, assume
that i = 1. By the justification assumption,

K1[GAME RULES → (S1 ∧ S2 ∧ . . . ∧ Sn)].

By standard epistemic reasoning,

K1(GAME RULES) → K1(S1 ∧ S2 ∧ . . . ∧ Sn)

and
K1(GAME RULES) → K1(S1) ∧K1(S2) ∧ . . . ∧K1(Sn).

Since the game is known to each player,

K1(GAME RULES)

holds, hence player 1 knows the strategies of all other players:

K1(S1) ∧K1(S2) ∧ . . . ∧K1(Sn).

Since σ is not a Nash profile, for player 1 there is a strategy σ′
1 such that the strategy

profile {σ′
1, σ2, . . . , σn} is, for 1, strictly preferable to {σ1, σ2, . . . , σn}. We claim that the

choice of strategy σ1 for player 1 is not Aumann-rational and hence cannot be rational in
any stronger sense. Indeed, player 1 knows that σ′

1 is his possible choice, since he knows
the game and all his choices. Moreover, 1 knows the unique choices by other players

K1(S2) ∧ . . . ∧K1(Sn).

Moreover, 1 knows his payoffs for outcomes {σ′
1, σ2, . . . , σn} and {σ1, σ2, . . . , σn} and knows

that the former is strictly higher. Therefore, 1 knows that his strategy σ′
1 yields a higher

payoff than his strategy σ1 for all other players’ strategies deemed possible by 1.
So the choice of σ1 by 1 is not Aumann-rational. 2

Corollary 1 If a game has no Nash equilibria, this game does not have a definitive justified
solution.
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As an example of why knowledge of epistemic conditions of the game is important
in Theorem 1, consider a version of the War and Peace Dilemma WPD in which players
follow knowledge-based rationality KBR ([1]) that uses Aumann’s rationality to delete
strictly dominated strategies and then applies Harsanyi’s Maximin Postulate to make a
definitive choice. Assume that the payoff matrix is mutually known but players are not
aware of each other’s rationality. Then S chooses peaceS as his dominant strategy. Since
B considers both moves by S possible, Aumann’s rationality alone does not provide a
definitive solution. Then B should follow the maximin strategy, hence choosing warB. The
resultant strategy profile

{warB, peaceS} (4)

is a justified definitive solution of this game:

Ki[GAME RULES → warB ∧ peaceS] i ∈ {B, S}.

However, (4) is not a Nash equilibrium. There is no contradiction with Theorem 1, since
none of the players know the epistemic conditions of the game in full, e.g., B does not know
that S is rational:

¬Ki[GAME RULES] i ∈ {B, S}.

As a result, each player does not know his opponent’s choice:

¬KS[warB] and ¬KB[peaceS].

4 Converse of Theorem 1

The converse of Theorem 1 does not necessarily hold for Aumann’s rationality. In
particular, the following game  1,2 1,0 0,1

0,1 0,2 1,0


has a unique Nash equilibrium (1,2), but no definitive solution within the scope of Au-
mann’s rationality, even if the game and rationality are commonly known. Indeed, each
strategy in this game is Aumann-rational and hence cannot be ruled out. However, the
Nash equilibrium (1,2) is a definitive solution of a game with the same payoff matrix for
an appropriate extension of Aumann’s rationality, cf. Section 4.1.

4.1 Bullet Nash rationality

In this section, we will show that a non-uniform version of converse Theorem 1 holds for
strategic games.
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Let G be a strategic game with n players, and σ = {σ1, σ2, . . . , σn} a (not necessarily
unique) Nash equilibrium of G. A Bullet Nash rationality6 corresponding to σ is a
predicate ri that holds at σ and does not hold at any other strategy profile. As introduced,
Bullet Nash rationality is a technical notion which, however, has a reasonable description
for games in which players’ moves are known to the others. In such a game, Bullet Nash
rationality associated with σ yields that player i has to choose σi once he knows all other
players’ choices in σ and does not have rational choices at all other nodes.

Lemma 1 Bullet Nash rationality yields Aumann’s rationality.

Proof. It suffices to check that each player is Aumann-rational at σ = {σ1, σ2, . . . , σn}.
Pick a player, for example player 1. Suppose σ1 is not an Aumann-rational strategy for
1. Then there is another strategy σ′

1 such that 1 knows that his payoff at {σ′
1, σ

′
2, . . . , σ

′
n}

is higher than 1’s payoff at {σ1, σ
′
2, . . . , σ

′
n} for all strategies σ′

2, . . . , σ
′
n deemed possible

by 1. In particular, 1’s payoff at {σ′
1, σ2, . . . , σn} should be higher than 1’s payoff at

{σ1, σ2, . . . , σn} since 1 considers strategies σ2, . . . , σn possible at σ. We now have a con-
tradiction: since σ is a Nash equilibrium, 1’s payoff at {σ1, σ2, . . . , σn} is higher than or
equal to 1’s payoff at {σ′

1, σ2, . . . , σn}. 2

Theorem 2 Let G be a strategic game under Bullet Nash rationality corresponding to a
Nash Equilibrium σ. Then σ is a definitive solution to G. If the rules of the game are
known to all players, then σ is a justified definitive solution to G.

Proof. Since each player is Bullet Nash-rational with σ, each player i choses σi. If every-
body knows that all players are Bullet Nash-rational with σ, everybody knows that each
player i choses σi. 2

Corollary 2 If σ is a Nash equilibrium in game G, then there is a notion of rationality
extending Aumann’s rationality which makes σ a definitive solution to G.

Corollary 3 If a game has a Nash equilibrium, then for an appropriate extension of Au-
mann’s rationality, such a game has a definitive solution.

5 Many Nash equilibria - no definitive solution either

In addition to what we have already learned about definitive solutions to games, in this
section we will show that under Aumann’s rationality, a strategic game with two or more
Nash equilibria cannot have a definitive solution. The reasoning in this section is more
logically involved, but is, we hope, still within reach of non-logicians. We will try to keep
the exposition as informal as possible.

6The name is analogous to “bullet voting,” in which the voter can vote for multiple candidates but
votes for only one.
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5.1 Regular form of strategic games

We start by defining the notion of GAME RULES in a more rigorous way. A regular
strategic game is a strategic game described by the following set of data.

a. Conditions on strategy propositions Sj
i stating ‘player i chooses strategy j.’ These

conditions express that each player i chooses one and only one strategy:
(S1

i ∨ . . . ∨ Sni
i ) and ¬(Sj

i ∧ Sl
i) for each j 6= l.

b. A complete description of the preference relation for each player at each outcome.

c. Aumann’s rationality condition:
if player i knows that his strategy j is strictly dominated, then ¬Sj

i .
This condition can be formulated in a straightforward way using strategy proposi-
tions, preference relation, and knowledge operators.

d. Knowledge of one’s own moves: Sj
i → Ki(S

j
i ) and (¬Sj

i ) → Ki(¬Sj
i ) for all i, j’s.

e. Common knowledge of a – d above.

Epistemic conditions (d) and (e) are optional, but adding them makes the results of this
section stronger, so we keep (d) and (e) without much discussion.

As an example, in the regular form WPD, we can associate S1
1 with warB, S2

1 with
peaceB, S1

2 with warS, and S2
2 with peaceS. Now we can show that for regular WPD,

{peaceB, peaceS} is a justified definitive solution. Indeed, it suffices to logically derive
peaceB ∧ peaceS from GAME RULES of WPD and argue that this derivation can be per-
formed by any player, hence

Ki[GAME RULES → peaceB ∧ peaceS] for each i ∈ {B, S}.

Here is a derivation of peaceB ∧ peaceS from GAME RULES of WPD (an informal version
of this derivation was presented in Section 2):

1. by (b) and (e), S knows that warS is a strictly dominated strategy for S;
2. by (c), ¬warS;
3. by (a) and 2, peaceS;
4. by (e), B knows 1 and (c), hence B knows peaceS;
5. from 4, B concludes that strategy warB is dominated, hence by (c), ¬warB;
6. by (e), from 5 and (a) B derives peaceB, hence peaceB;
7. from 3 and 6 we conclude peaceB ∧ peaceS.

This example was intended to illustrate that the regular form of strategic games is sufficient
for accommodating the usual epistemic reasoning in games.
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5.2 Knowing and playing any Nash equilibrium is consistent

Lemma 2 A regular strategic game is consistent with the knowledge of any of its Nash
equilibria: for each player i and Nash equilibrium {σe1

1 , . . . , σen
n },

Ki[GAME RULES] ∧Ki(S
e1
1 ∧ . . . ∧ Sen

n ) (5)

is consistent.

Proof. It suffices to present an epistemic model (Aumann structure, S5 Kripke model) M
in which at some node u, both Ki[GAME RULES] and Ki(S

e1
1 ∧ . . . ∧ Sen

n ) hold.
Epistemic model M consists of the set of worlds (nodes) W , partitions R1, . . . , Rn

corresponding to knowledge of players 1, . . . , n, and the truth relation ‘’ which specifies
the truth value of strategy propositions at nodes from W .

• The set of worlds W is the set of all strategy profiles σ = {σj1
1 , . . . , σjn

n } of the game.
Informally, we may think of possible worlds as epistemic states of players at the
moment prior to making their moves.

• All partition sets are singletons: R1 = . . . = Rn = {{u} | u ∈ W}. This corresponds
to the situation in which at each node σ, all strategies from σ are known to all players.

• {σj1
1 , . . . , σjn

n }  Sj
i if and only if σj

i occurs in {σj1
1 , . . . , σjn

n }, i.e., if j = ji. Naturally,
we assume that all ‘true’ preference relation statements from (b) hold at each world.

Let σ = {σe1
1 , . . . , σen

n } be a Nash equilibrium of the game. We claim that

σ  Ki[GAME RULES] ∧Ki(S
e1
1 ∧ . . . ∧ Sen

n ) for each i = 1, . . . , n.

Since there are no nodes in W indistinguishable from σ, each proposition F is equivalent
to Ki(F ). It now suffices to establish that

σ  GAME RULES ∧ (Se1
1 ∧ . . . ∧ Sen

n ),

from which
σ  Se1

1 ∧ . . . ∧ Sen
n

holds by definition of ‘ .’ It now remains to show that

σ  GAME RULES.

We will check conditions (a – e) one by one.

• (a) and (b) hold at each node by definition of ‘ .’
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• (c) holds in σ by the following reasoning. The only way Aumann rationality at
σ can be violated is when some Sj

i holds at σ, whereas player i knows at σ that
j is strictly dominated. By the choice of partitions, each player i at σ knows all
strategies Se1

1 , . . . , Sen
n , therefore i knows that the dominance condition for σei

i reduces
to comparing i’s payoff at outcomes σ and

{σe1
1 , . . . , σ

ei−1

i−1 , σl
i, σ

ei−1

i−1 , . . . , σen
n } (6)

for all possible l’s. Since σ is a Nash equilibrium, no outcome (6) is strictly preferable
to σ for player i, therefore, the only way in which Aumann’s rationality could fail at
σ turns out to be impossible. Hence (c) holds at σ as well.

• (d) holds at each node by the choice of partitions R1, . . . , Rn.

• (e) holds by the partition structure: since there are no indistinguishable states in M,
all true propositions are known, and even commonly known.

2

An appropriate probabilistic version of Lemma 2 for mixed Nash equilibria was found
in [3] in which “know” means “ascribe probability 1 to.”

Corollary 4 A regular strategic game is consistent with playing any of its Nash equilibria:
for any Nash equilibrium {σe1

1 , . . . , σen
n },

GAME RULES ∧ (Se1
1 ∧ . . . ∧ Sen

n ) (7)

is consistent.

Proof. By factivity, (5) implies (7). Therefore, if (7) were inconsistent, (5) would be
inconsistent too. 2

5.3 No definitive solutions to multi-equilibria regular games

Theorem 3 No regular strategic game with more than one Nash equilibium can have a
definitive solution.

Proof. Suppose otherwise, i.e., that for some Nash equilibrium σ = {σe1
1 , . . . , σen

n },

GAME RULES → (Se1
1 ∧ . . . ∧ Sen

n ) .

By the assumptions, the game has a different Nash equilibrium σ′ = {σl1
1 , . . . , σln

n } as well.
By (a), two different outcomes are incompatible:

GAME RULES → ¬(Sl1
1 ∧ . . . ∧ Sln

n ),
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which yields that
GAME RULES ∧ (Sl1

1 ∧ . . . ∧ Sln
n )

is inconsistent. This contradicts Corollary 4. 2

Corollary 5 No regular strategic game with more than one Nash equilibrium can have a
justified definitive solution.

Proof. Obvious, since each justified definitive solution is a definitive solution. 2

Note that some non-regular strategic games can single out one of multiple Nash
equilibria. For example, if G is a regular game presented by GAME RULES and σ =
{σe1

1 , . . . , σen
n } is one of its Nash equilibria, then, by Corollary 4, a new “game” Gσ with

the same payoffs and an additional condition that everybody plays σ,

GAME RULES ∪ (Se1
1 ∧ . . . ∧ Sen

n ) ,

is consistent. It is easy to see that σ is a justified definitive solution to Gσ.

6 Discussion

Similar methods could be applied for analyzing mixed strategies as well.
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