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Abstract

An issue of a logic of knowledge with justifications has been discussed
since the early 1990s. Such a logic along with the usual knowledge oper-
ator 2F “F is known” should contain assertions t:F “t is an evidence of
F”. In this paper we build two systems of logic of knowledge with justi-
fications: LPS4, which is an extension of the basic epistemic logic S4 by
an appropriate calculus of evidences corresponding to the logic of proofs
LP together with the principle that justification implies knowledge, and
LPS4−, which is LPS4 augmented by the mixed implicit/explicit negative
introspection principle. We offer a provability semantics for LPS4 and
LPS4− where the epistemic modality 2F is interpreted as “F is true and
provable” and the evidence assertions t:F as “t is a proof of F”. We find
Kripke semantics and establish a number of fundamental properties of
LPS4 and LPS4−. On the way to those systems we find the minimal joint
logic of proofs and formal provability, LPGL, complete with respect to the
standard provability semantics.

1 Introduction.

A need for a logic of knowledge with justifications has been discussed in [6].
Such a logic along with the usual knowledge operators 2F “F is known” should
contain assertions t:F “t is an evidence of F”, which brings explicit and quan-
titative components to the logic of knowledge.

The explicit character of judgments significantly expands the expressive
power of epistemic logics. The original epistemic modality 2F should be re-
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garded as “potential knowledge”, or “knowability”1 rather than actual knowl-
edge. Evidence operators t:F model real knowledge of the agent which provides
a justification that F true in all situations. This intuition is consistent with a
Kripke style semantics of the logic of knowledge with justifications developed
below. An assertion t:F if true in a world holds in all worlds of a model, the
present, future, or past ones.

The quantitative component of justification terms could be useful in dealing
with the well-known logical omniscience problem [10, 22, 25, 26] since an evi-
dence term t in t:F carries information about how hard it was to justify F from
given assumptions.

In this paper we deduce basic principles of knowledge and justifications from
the laws of provability. The provability semantics is a representative special case
of epistemic reading of modal logic and as such shreds light on the general logic
of knowledge with justifications.

Provability interpretation of modal logic where 2F is interpreted as

F is provable in Peano Arithmetic. (1)

was first considered by Gödel in [13] and actively studied since Solovay’s paper
[30] of 1976 (cf. [7, 8, 16, 29]). In this paper we use the provability logic
GL as a source of a solid provability semantics for the logic of knowledge with
justifications. Provability logic GL is not compatible with epistemic logic S4,
mainly because arithmetical provability is not reflexive. However, S4 can be
modelled in GL by using so called strong provability operator

F is true and provable in Peano Arithmetic. (2)

S4 is sound with respect to the strong provability semantics, the extension S4Grz
of S4 by Grzegorcsyk schema 2(2(F → 2F ) → F ) → F provides a complete
propositional axiomatization of strong provability [7, 15, 18, 19]. Kripke models
corresponding to S4Grz have S4-frames which do not distinguish possible worlds
mutually accessible from each other.

The idea of the logic of proofs as an explicit counterpart of S4 first appeared
in Gödel’s [14]. The formal system LP of the logic of proofs was introduced in
[2, 3]. LP describes all valid principles of proof operators t:F

t is a proof of F in Peano Arithmetic (3)

with an appropriate set of operations on proofs sufficient to realize modal logic
S4 explicitly [3]. A similar explicit counterpart of S5 was found in [5]. A
promising semantical approach to the logic of proofs as a general calculus of
evidences in the epistemic framework has been developed in [12, 21].

Joint logics of proofs and provability studied in [1, 23, 24, 27, 28] are of special
interest for this paper since they serve as a prototype of the logic of knowledge
with evidences. The first system B of provability and explicit proofs without
operations on proof terms was found, supplied with Kripke semantics and shown

1Cf. Fitting’s paper [12].
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to be arithmetically complete in [1]. Arithmetically complete system BGrz of
strong provability and proofs without operations was introduced in [23, 24]
(a comprehensive system of propositional operations on proofs was not known
till [2]). Finally, in [27, 28] a system LPP of provability and explicit proofs
containing both LP and GL was found in the language with some additional
operations.

In this paper we pursue two main goals:

A) to axiomatize the arithmetically complete system, LPGL, of proofs and
provability in the joint language of LP and GL;

B) to introduce logics of knowledge with justifications based on the principles
from LPGL and thus enjoying the standard provability semantics.

In section 2 we introduce the logic LPGL of proofs and formal provability which
is the minimal arithmetically complete extension of LP and GL. We establish
Kripke and arithmetical completeness as well as a decidability of LPGL for a
given constant specification. LPGL is a refinement of the system LPP by Sidon-
Yavorskaya [27, 28].

In section 3 we construct two systems of logic of knowledge with justifica-
tions. The a basic one, LPS4 consists of S4 combined with LP as a calculus of
evidences and a principle connecting implicit and explicit knowledge operators:
t:F →2F . The system LPS4 may be regarded as the basic logic of knowledge
with justifications when no specific assumptions are made concerning the be-
havior of explicit knowledge. LPS4 enjoys the arithmetical provability semantics
when 2F is interpreted as the strong provability (2) and the evidence judgments
t:F are interpreted as proof assertions (3). LPS4 is sound with respect to Fitting
models (cf. [12]) and has an important internalization property typical for logics
with rich enough system of terms for explicit knowledge.

The other system, LPS4−, is LPS4 augmented by the principle of negative
introspection ¬(t:F )→2¬(t:F ) (which explains the superscript “minus” in the
name of the system). Alternatively, LPS4− can be axiomatized over S4 plus LP
by the principle of decidability of evidences 2t :F ∨ 2¬(t :F ). We show that
LPS4− enjoys the standard provability semantics, is decidable and complete
with respect to a natural Kripke style semantics. In order to get a complete
system in the language of LPS4−, one has to add Grzegorczyk schema to LPS4−.

We believe that systems LPS4 and LPS4− provide a proper framework for
reasoning about knowledge and enables us to express principles which could find
its formulation neither in the pure modal language nor in the pure language
of proof terms. For example, the modal principle of negative introspection
¬2F → 2¬2F is valid neither in the provability semantics nor in the strong
provability semantics. A purely explicit version of negative introspection ¬(x:
F ) → t(x):¬(x :F ) does not hold in the logic of proofs LP neither. However,
in the logic of knowledge with justifications LPS4− the negative introspection
appears in a synthetic explicit-implicit form ¬(t:F )→ 2¬(t:F ) valid in both
provability and strong provability semantics, which provides a good reason for
accepting this principle in general.
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2 Joint logic of proofs and formal provability.

There are several motivations to study the joint logic of proofs and formal prov-
ability LPGL below. On the foundational side, we wanted to find an arithmeti-
cally complete closure of the provability logic GL with atoms 2F , and the logic
of proofs LP with atoms t:F . In addition to principles imported from GL and
LP such a closure contains provability principles in a joint language of explicit
proofs and formal provability which are dictated by the underlying provability
models: connection t:F →2F , negative introspection ¬t:F →2¬(t:F ) or weak
reflexivity t:2F →F . In section 3 we use these provability principles to build
logics of explicit knowledge.

2.1 Formulation and basic properties of LPGL

Definition 1. Proof polynomials for LPGL are terms built from proof variables
x, y, z, . . . and proof constants a, b, c, . . . by means of three operations, applica-
tion “·” (binary), union “+” (binary), and proof checker “!” (unary).

Though proof polynomials for LPGL have the same set of operations as the ones
for the logic of proof LP, there are more axioms and hence more choices to
specify proof constants in LPGL, which makes the latter more expressive than
the standard LP-polynomials. Note, however, that LPGL-polynomials extend
LP-polynomials in the minimal possible way, i.e. by adding only proof constants
corresponding to additional axioms.

Definition 2. Using t to stand for any proof polynomial and S for any sentence
variable, the formulas are defined by the grammar

A = S | A1→A2 | A1 ∧A2 | A1 ∨A2 | ¬A | 2A | t:A.

Subformulas Sub(F) of a given formula F are defined as usual, with the extra
clause

Sub(t:A) = t:A ∪ Sub(A).

We assume also that “t:”, “2” and “¬” bind stronger than “∧,∨”, which bind
stronger than “→”.

Definition 3. The logic of proofs and formal provability, LPGL, has axioms of
both LP and GL, three specific principles connecting explicit proofs with formal
provability and rules Modus Ponens and Constant Specification as shown below.

I. Classical propositional logic

The standard set of axioms A1-A10 from [17] (or a similar system)
R1. Modus Ponens

II. Provability Logic GL

GL1. 2(F→G)→(2F→2G) (implicit application)

4



GL2. 2F→22F (implicit proof checker)
GL3. 2(2F→F )→2F (Löb schema)
R2. ` F ⇒ ` 2F (necessitation rule)
R3. `2F ⇒ ` F (reflexivity rule)

III. Logic of Proofs LP

LP1. s:(F→G) → (t:F→(s·t):G) (application)
LP2. t:F → !t:(t:F ) (proof checker)
LP3. s:F→(s+t):F , t:F→(s+t):F (union)
LP4. t:F→F (explicit reflexivity)
R4. ` c:A, where A is an axiom from I - IV and c is a proof constant

(constant specification rule)

IV. Principles connecting explicit and formal provability

C1. t:F→2F (explicit-implicit connection)
C2. ¬(t:F )→2¬(t:F ) (negative introspection)
C3. t:2F→F (weak reflexivity)

Naturally, all axioms and rules are applied across sections I-IV. LPGL is closed
under substitutions of proof polynomials for proof variables and formulas for
propositional variables, since all axioms and rules are invariant with respect
to those substitutions. LPGL contains both LP and GL, enjoys the deduction
theorem Γ, F ` G ⇒ Γ ` F → G. The standard proof by induction on a
derivation of G from Γ, F fits here with minor modifications.

Definition 4. Constant specification CS is a finite set {c1 :A1, . . . , cn :An} of
formulas, where each Ai is an axiom from I-IV and each ci is a proof constant. By
default, with each derivation in LPGL we associate a constant specification CS
introduced in this derivation by the rule of constant specification. By LPGLCS we
mean a subsystem of LPGL where the rule of constant specification is restricted
to producing formulas from a given CS only. In particular, LPGL∅ is a subsystem
of LPGL without any constant specifications.

The way of using proof constants in LPGL derivations is typical for the logic of
proofs. Whenever we need a proof term for a given axiom A, we introduce a
constant specification c:A. When claiming that F is derivable in LPGL we mean
a derivation with a constant specification CS associated with this derivation:

F is derivable given c1:A1, . . . , cn:An.

Comment 1. The reflexivity rule R3 is usually omitted in the standard formu-
lation of GL since it is an admissible rule of the latter (cf. [7, 8]). The same
holds here: the rule R3 is derivable from the rest of LPGL (lemma 6). However,
we need R3 as a postulated rule of the system to guarantee a good behavior
of the fragments of LPGL corresponding to specific constant specifications. An-
other curious feature of the system is the fact that the weak reflexivity axiom
C3 t:2F→F is derivable from the rest of LPGL∅.
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Lemma 1. LPGL∅ ` t:2F→F .

Proof.
1. ¬2F→¬t:2F (contrapositive of LP4);
2. ¬t:2F→2(¬t:2F ) axiom C2;
3. 2(¬t:2F )→2(t:2F→F ), by reasoning in GL;
4. ¬2F→2(t:2F→F ), from 1, 2 and 3;
5. 2F→2(t:2F→F ), by reasoning in GL;
6. 2(t:2F→F ), from 4 and 5;
7. t:2F→F , by R3. 2

However, proof constants corresponding to the weak reflexivity axiom C3 are
needed to guarantee the internalization property of LPGL (Proposition 2). Hence,
we keep C3 as a basic postulate of the system to conveniently place it under the
scope of the constant specification rule R4.

There are other innocent redundancies in the above formulation of LPGL, e.g.
GL2 is derivable from the rest of the system [8]. More examples are given by
corollary 1 and lemma 7.

Lemma 2. The following are provable in LPGL∅ (hence in LPGL and in LPGLCS

for any constant specification CS).

1. x:F→2x:F (positive introspection)
2. 2x:F ∨2¬x:F (decidability of proof assertions)

Proof.

1. x:F→ !x:x:F , by LP2,
!x:x:F→2x:F , by C1
x:F→2x:F , by propositional logic

2. x:F→2x:F , by the previous item of this lemma
¬(x:F )→2¬(x:F ), by C2
2x:F ∨2¬x:F , by propositional logic

2

Lemma 3. LPGLCS proves F ⇔ LPGL∅ proves
∧

CS→F .

Proof. Similar to Lemma 2.1 from [28], by induction on a derivation of F in
LPGLCS. The only nontrivial cases are the rules of necessitation and reflection.

If F is obtained by the necessitation rule, i.e. F is 2G and LPGLCS ` G,
then, by the induction hypothesis, LPGL∅ `

∧
CS→G. By GL reasoning,

LPGL∅ ` 2
∧

CS→2G.

By positive introspection (Lemma 2.1) and some trivial GL reasoning,

LPGL∅ `
∧

CS→2
∧

CS,
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hence LPGL∅ `
∧

CS→F.
If F is obtained by the reflection rule, then LPGLCS ` 2F and, by the

induction hypothesis, LPGL∅ `
∧

CS→2F , hence LPGL∅ ` ¬
∧

CS ∨ 2F . By
the negative introspection (axiom C2) and some GL reasoning,

LPGL∅ ` ¬
∧

CS→2¬
∧

CS.

Therefore, LPGL∅ ` 2¬∧
CS ∨ 2F and LPGL∅ ` 2(¬∧

CS ∨ F ). By the
reflection rule, LPGL∅ ` ¬

∧
CS ∨ F , hence LPGL∅ `

∧
CS→F . 2

Note, that both positive and negative introspection are needed to reduce the
whole of LPGL to its fragment of unspecified constants LPGL∅ and LPP to LPP∅.

Lemma 4. For any formula F there are proof polynomials upF (x) and downF (x)
such that LPGL proves

1. x:F→upF (x):2F
2. x:2F→downF (x):F

Proof.

1. x:F→2F , by C1
a:(x:F→2F ), specifying constant a, by constant specification rule
!x:x:F→(a·!x):2F , by LP1 and propositional logic
x:F→ !x:x:F , by LP2
x:F→(a·!x):2F , by propositional logic

It suffices now to put upF (x) equal to a·!x such that a:(x:F→2F ).

2. x:2F→F , by C3
b:(x:2F→F ), specifying constant b, by constant specification rule
!x:x:2F→(b·!x):F , by LP1 and propositional logic
x:2F→ !x:x:2F , by LP2
x:2F→(b·!x):F , by propositional logic

It suffices now to put downF (x) equal to b·!x such that b:(x:2F→F ) 2

Proposition 1. (Constructive necessitation in LPGL)
If LPGL proves F then LPGL proves p:F for some proof polynomial p.

Proof. Induction on a derivation of F . Base: F is an axiom. Then use constant
specification rule. In this case p is an arbitrary proof constant. Induction step.
If F is obtained from X →F and X by Modus Ponens. By the induction hy-
pothesis, ` s:(X→F ) and ` t:X, hence, by LP1, ` (s·t):F , hence p is s·t. If F is
obtained by Necessitation, then F = 2G and ` G. By the induction hypothesis,
` t:G for some proof polynomial t. Use lemma 4.1 to conclude that ` upG(t):2G
and put p = upG(t). If F is obtained by the reflexivity rule R3, then ` 2F . By
the induction hypothesis, ` t:2F for some proof polynomial t. Use lemma 4.2
to conclude that ` downF (t):F and put p = downF (t). If F is obtained by the
constant specification rule, then F is c:A for some constant c and axioms A. Use
the proof checker axiom LP2 to derive !c:c:A, i.e. !c:F . Here p is !c. Note that
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proof polynomial p is ground and built from proof constants by applications and
proof checker operations only. Moreover, the presented derivation of p:F uses
neither rule R2 nor rule R3. 2

Corollary 1. The necessitation rule R2 is derivable from the rest of LPGL.

Indeed, if ` F then, by proposition 1, ` p:F for some proof polynomial p. By
C1, ` 2F .

Note that the rule of necessitation is not redundant in LPGLCS for any constant
specification CS. Indeed, to emulate the rule of necessitation one needs to apply
constructive necessitation to the unbounded set of theorems of LPGLCS, which
requires an unbounded set of constant specifications.

The following property of LPGL is a generalization on constructive necessi-
tation (proposition 1). It is the explicit analogue of the modal logic rule, which
holds in normal modal logics containing K4, e.g. S4, S5, GL and LPGL

A1, . . . , Ak, 2B1, . . . , 2Bn ` F

2A1, . . . , 2Ak,2B1, . . . , 2Bn ` 2F

Proposition 2. (Lifting) If A1, . . . , Ak, y1 :B1, . . . , yn :Bn ` F then for some
proof polynomial p(x1, . . . , xk, y1, . . . , yn)

x1:A1, . . . , xk:Ak, y1:B1, . . . , yn:Bn ` p(x1, . . . , xk, y1, . . . , yn):F.

Proof. Similar to proposition 1 with two new base clauses. If F is Ai, then xi

can be taken as p. If F is yj:B, then p is equal to !yj . 2

Lemma 5. (Internalization property of LPGL) If A1, . . . , Ak ` F then for some
proof polynomial p(x1, . . . , xk)

x1:A1, . . . , xk:Ak ` p(x1, . . . , xk):F.

Proof. A special case of proposition 2. 2

The internalization property states that any derivation in LPGL can be inter-
nalized and proof checked as a proof term in LPGL itself. Since LPGL extends
typed combinatory logic (hence typed λ-calculus) one could compare the scopes
of the internalization property and the Curry-Howard isomorphism. It is easy
to see that the latter is a very special case of the former when A1, . . . , Ak, F
contain neither modalities nor proof polynomials.

Lemma 6. The reflection rule R3 is derivable from the rest of LPGL.

Proof. Suppose ` 2F . By proposition 1, ` p:2F for some proof polynomial p.
By C3, ` F . 2
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Lemma 7. Explicit reflection axiom t:F→F is derivable from the rest of LPGL.

Proof. LPGL derives t:F → upF (t):2F without using explicit reflection axiom
(cf. lemma 4.1). Apply C3: upF (t):2F→F to get the desired t:F→F . 2

2.2 Kripke models for LPGL

An LPGL-model in short is a GL-model where all other axioms of LPGL hold.
In building the Kripke models for LPGL we closely follow the corresponding
constructions from [1, 28], where all the ground work has been done carefully.
On this basis we will give a schematic description of LPGL-models and refer the
reader to [1, 28] for further details.

Definition 5. An LPGL-model is a triple (K,≺,°) where (K,≺) is a finite
irreflexive tree, ° is a forcing relation between nodes of K and LPGL-formulas
satisfying the following forcing conditions.

1. usual modal conditions for 2, i.e. ° respects boolean connectives at each
node, a°2F iff b°F for all b Â a;

2. stability for every formula t:F either all nodes of K force t:F or all nodes
of K force ¬t:F ;

3. reflexivity of explicit knowledge: a° t:F yields a°F ;

4. if a°s:(F→G) and a° t:F then a°(s·t):G;

5. if a° t:F then a°!t:(t:F );

6. if a°s:F then a forces both (s+t):F and (t+s):F .

A formula F holds in a model M if F is forced at each node of M . The root node
of a model is called root. Put H(F ) = {2G→G | 2G is a subformula of F}. We
call a model F -sound, if root°H(F ). Similar conditions on a Kripke model could
be found in [1, 28]. Moreover, each LPP model is also a LPGL model. A model M
is a CS-model, for a given constant specification CS= {c1:A1, c2:A2 . . . cn:An},
if M is X-sound and X holds in M for each X = ci:Ai from this CS. A formula
F is CS-valid if it holds in each F -sound CS -model.

Theorem 1. (Soundness) If F is derivable in LPGLCS, then F is CS-valid.

Proof. The standard induction on derivations in LPGL. The only nontrivial
case is the induction step corresponding to the reflection rule ` 2F ⇒` F .
By the induction hypothesis, 2F holds in each 2F -sound CS -model. Suppose
there is an F -sound CS -model M where F does not hold at a certain node a.
There are two possibilities.

Case 1. a is not root. Then root 6° 2F , hence root ° 2F →F and M is an
2F -sound CS -countermodel for 2F .
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Case 2. a is root. Build a new model M ′ by adding to M a new node b
below a and defining

b°X ⇔ a°X

for all X which are sentence variables of formulas t:Y . It is easy to see that
the same equivalence holds for all X’s which are subformulas of

∧
CS → F .

Indeed, the cases of boolean connectives are trivial. If X is 2Z and b°X, then,
apparently, a ° X. If a ° X, then a ° 2Z, hence a ° Z, since M is F -sound.
By the definition of forcing, b°2Z as well. Since a 6°F , b 6°2F and M ′ is an
2F -sound CS -countermodel for 2F . 2

Theorem 2. (Kripke completeness of LPGLCS.)
If F is not derivable in LPGLCS, then F is not CS-valid.

Proof. Follows from the Kripke completeness of LPP from [28]. This also es-
tablishes the decidability of LPGLCS for any (finite) CS. 2

2.3 Provability semantics for LPGL.

The provability semantics for LPGL in Peano Arithmetic PA is the natural blend
of those for the provability logic GL and the logic of proofs LP. As one might
expect, 2F is interpreted as there is a proof of F in PA, whereas t:F is interpreted
as t is a proof of F in PA.

Definition 6. A proof predicate is a provably ∆1-formula Prf (x, y) such that
for every arithmetical sentence ϕ

PA ` ϕ ⇔ for some n∈ω Prf (n, pϕq) holds2.

A provability predicate Pr(y) associated to Prf (x, y) is ∃xPrf (x, y). A com-
prehensive exposition of provability predicates can be found in [11]. A proof
predicate Prf(x,y) is called normal if the following conditions are met:

Finiteness of proofs: for every k the set T (k) = {l | Prf (k, l)} is finite. The
function from k to the code of T (k) is computable.

Conjoinability of proofs: for any k and l there is a natural number n such
that

T (k) ∪ T (l) ⊆ T (n).

Proposition 3. ([3]) For every normal proof predicate Prf there are computable
functions m(x, y), a(x, y), c(x) such that for all arithmetical formulas ϕ,ψ and
all natural numbers k, n the following formulas are valid:

Prf (k, pϕ→ψq) ∧ Prf (n, pϕq)→Prf (m(k, n), pψq)

Prf (k, pϕq)→Prf (a(k, n), pϕq), Prf (n, pϕq)→Prf (a(k, n), pϕq)

Prf (k, pϕq)→Prf (c(k), pPrf (k, pϕq)q).
2By pϕq we denote a goedel number of ϕ.
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The natural arithmetical proof predicate PROOF(x,y)

“x is the code of a derivation containing a formula with the code y”.

with appropriate functions m(x, y), a(x, y) and c(x) is the principal example of
a normal proof predicate.

Definition 7. A provability interpretation ∗ of the language of LPGL has the
following parameters:

• a normal proof predicate Prf with the functions m(x, y), a(x, y), c(x) as
above,

• a mapping from propositional letters to sentences of arithmetic,

• a mapping from proof variables and proof constants to natural numbers.

Definition 8 We define an arithmetical translation F ∗ of proof terms t and
LPGL-formulas F under a given provability interpretation ∗ by induction. By
the previous definition, ∗ is defined on proof variables and proof constants as well
as on propositional letters. In addition, ∗ commute with boolean connectives,

(t·s)∗ = m(t∗, s∗), (t + s)∗ = a(t∗, s∗), (!t)∗ = c(t∗),

(t:F )∗ = Prf (t∗, pF ∗q), (2F )∗ = ∃xPrf (x, pF ∗q).

An interpretation ∗ converts a proof polynomial t into a natural number t∗, an
LPGL-formula F into an arithmetical sentence F ∗. Given a constant specifica-
tion CS, an arithmetical interpretation ∗ is a CS -interpretation if all formulas
from CS are true (equivalently, are provable in PA) under interpretation ∗.
Theorem 3. (Arithmetical soundness) If LPGL proves F then PA ` F ∗ for any
arithmetical interpretation ∗ respecting constant specifications made during a
given derivation of F .

Proof. A straightforward induction on the derivation in LPGL. All axioms of
and rules of LP and GL have been checked in [3] and [30] respectively. It remains
to check the soundness of axioms C1-C3, out of which C1 and C2 are trivial.
Let us check C3, i.e. t:2F →F . If Prf (t∗, pPr(pF ∗q)q) is true, then Pr(pF ∗q)
is also true and PA ` F ∗, hence PA ` Prf (t∗, pPr(pF ∗q)q) → F ∗, i.e. PA `
(t:2F→F )∗. If Prf (t∗, pPr(pF ∗q)q) is false, then PA ` ¬Prf (t∗, pPr(pF ∗q)q),
hence PA ` Prf (t∗, pPr(pF ∗q)q)→F ∗, i.e. again PA ` (t:2F→F )∗. 2

Theorem 4. (Arithmetical completeness) If LPGLCS does not prove F then there
exists a CS-interpretation ∗ such that PA 6` F ∗.

Proof. A more or less straightforward simplified version of the arithmetical
completeness proof for LPP from [28] works here. Basically, one has just to
ignore the functions ⇓2 and ⇑2 of LPP and take into consideration the new
principles C1 and C3 which do not alter the picture. 2

Corollary 2. LPGL is a conservative extension of B.
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2.4 Relations between LPGL and LPP

The language of joint logic of proofs and provability LPP from [27, 28] is an
extension of the language of LP by modality 2 and two additional unary func-
tional symbols ⇓2 and ⇑2. Axioms of logic LPP consist of axioms of LP, axioms
of GL and additional principles

B1. t:A→2(t:A),
B2. ¬(t:A)→2¬(t:A),
B3. t:2A→(⇓2 t):A,
B4. t:A→(⇑2 t):2A.

The rules of LPP are the ones of LPGL.
The arithmetical semantics for LPP is defined similar to the one for LPGL

(above) with additional arithmetical operations of proofs corresponding to ⇓2

and ⇑2. Main results about LPP were established in [27, 28], namely LPP was
shown to be decidable, sound and complete with respect to the arithmetical
provability semantics for each constant specification. The principal difference
between LPP and LPGL is the presence of operations ⇓2 and ⇑2 in the former.
As we have just shown, the main desired properties of a joint logic of proofs and
provability can be achieved without extending the original joint language of LP
and GL: the system LPGL does not need operations ⇓2 and ⇑2, but still captures
both LP and GL, is arithmetical complete and closed under internalization.

In a certain sence LPGL is the minimal arithmetically complete system con-
taining axioms and rules of LP and GL and closed under internalization. Indeed,
LPGL is formulated in a joint language of LP and GL without adding any new
operations. Axioms of LPGL represent arithmetically provable principles, hence
they should all be included into the system. For any given constant specification
the corresponding set of arithmetical instances of formulas in the langauge of
LPGL is closed under R1, R2 and R3, hence whose rules should be included into
the minimal system as well. Finally, by internalization, there should be a ground
proof polynomial specified as a proof of each axiom of the minimal system; in
LPGL it is a proof constant. The only design discretion we had was choosing an
equivalent axiom system and using different constant specifications with basi-
cally the same outcome modulo to replacing some constants by corresponding
ground proof terms.

Technically speaking, neither of LPGL and LPP is a subsystem of the other
since each of them has some axioms A which are not axioms of the other system,
hence the corresponding theorems c:A of one system are not derivable of the
other one. Clearly, we don’t want to distinguish systems which have mutually
derivable sets of axioms and rules or differ only by ground proof terms assigned
to axioms.

There is a fair way to eliminate these undesirable effects. Both systems
LPGL and LPP uniformly reduce to their fragments LPGL∅ and LPP∅ without
constant specifications (Lemma 3 and Lemma 2.1 from [28]). Comparing LPGL∅
and LPP∅ tolerates equivalent changes in the axiom system or substituting proof
constants by ground proof terms. With respect to this test, LPGL is a fragment
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of LPP.

Lemma 8. LPGL∅ is a subsystem of LPP∅.

Proof. All the rules and almost all the axioms of LPGL∅, but C1 and C3, are
the rules and axioms of LPP∅ as well. To prove C3 in LPP∅ we just repeat the
derivation from Lemma 1. Here is a proof of C1 in LPP∅:

1. t:A→A, axiom B3;
2. 2t:A→2A, by reasoning in GL;
3. t:A→2t:A, by B4 (positive introspection);
4. t:A→2A, by propositional logic, from 2 and 3. 2

We conjecture that LPP can be also imbedded into LPGL preserving the
logical structure of the former. Namely, given a derivation D in LPP one can
replace all occurrences of operations ⇓2 (·) and ⇑2 (·) by some LPGL-proof
polynomials u(·) and d(·) respectively such that the resulting sequence D′ is
derivable in LPGL

3 Basic logics of knowledge with justifications

As we have already mentioned in Intruduction, there is a well developed ap-
proach due to Boolos-Goldblatt-Kuznetsov-Muravitsky [7, 15, 18, 19] of emu-
lating S4 in the logic of formal provability, via so called “strong provability”
modality ¡F = F ∧ 2F . We will apply this translation to derive from the
arithmetical provability semantics the basic epistemic logic with justifications,
LPS4.

Definition 9. Justification polynomials for LPS4 are the same as proof polyno-
mials for LPGL, i.e. they are terms built from justification variables x, y, z, . . .
and constants a, b, c, . . . by means of three operations, application “·” (binary),
union “+” (binary), and evidence checker “!” (unary). Formulas of the language
of LPS4 are the same as of LPGL, i.e. they are defined by the grammar

A = S | A1→A2 | A1 ∧A2 | A1 ∨A2 | ¬A | 2A | t:A.

The basic logic of knowledge with justifications, LPS4, is a fusion of systems
LP and S4, with principles connecting justifications and knowledge operators
adopted from the joint logic of proofs and formal provability LPGL.

Definition 10. The system LPS4 has the following axioms and rules

I. Classical propositional logic

A1-A10. (the standard set of axioms, e.g. from [17])
R1. Modus Ponens

II. Basic Epistemic Logic S4

E1. 2(F→G)→(2F→2G)
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E2. 2F→22F
E3. 2F→F
R2. ` F ⇒ ` 2F (necessitation)

III. Logic of Proofs LP

LP1. s:(F→G) → (t:F→(s·t):G) (application)
LP2. t:F → !t:(t:F ) (explicit introspection)
LP3. s:F→(s+t):F , t:F→(s+t):F (union of justifications)
LP4. t:F→F (reflexivity of explicit knowledge)
R4. ` c:A, where A is an axiom and c is a proof constant (constant

specification)

IV. Principles connecting explicit and implicit knowledge

C1. t:F→2F (explicit-implicit connection)
C2. ¬(t:F )→2¬(t:F ) (negative introspection)

Obviously, LPS4 contains both LP and S4. The principle of weak reflexivity
t:2F →F is derivable in LPS4−, explicit reflexivity t:F →F is redundant but
we keep it listed for convenience. Moreover, LPS4 is closed under substitutions
of polynomials for justification variables and formulas for sentence variables,
and enjoys the deduction theorem. For a given constant specification CS =
{c1:A1, . . . , cn:An} (where each Ai is an axiom from I-IV and each ci is a proof
constant) we define LPS4−CS and LPS4−∅ as in Definition 4.

Proposition 4. Lemmas 2, 4, and 5, Propositions 1, 2 hold for LPS4−.

Corollary 3. LPS4− enjoys internalization and constructive necessitation.

Lemma 9. LPS4−CS proves F ⇔ LPS4−∅ proves
∧

CS→F .

Proof. Similar to Lemma 3, by induction on a derivation of F in LPS4−CS. The
only nontrivial case is the rule of necessitation which is handles by the positive
introspection principle. 2

An alternative formulation of LPS4− (modulo substituting ground polyno-
mials for justification constants) can be given by replacing the group IV by the
principles of positive and negative introspection, or by the principle of decid-
ability of evidences 2t :F ∨ 2¬t :F . Indeed, here is a derivation of C1 from
I+II+III+positive and negative introspection:

1. t:F→F , LP4
2. 2t:F→2F , by necessitation and E1
3. t:F→2t:F , positive introspection
4. t:F→2F , from 2 and 3.

Here is a derivation of positive and negative introspection from I+II+III+decidability
of evidences:

1. ♦t:F→2t:F , from decidability of evidences
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2. ♦¬(t:F )→2¬(t:F ), likewise
3. t:F→♦t:F , from E3
4. ¬(t:F )→♦¬(t:F ), from E3
5. t:F→2t:F , from 1,3
6. ¬(t:F )→2¬(t:F ), from 2,4.

The summary of this observation is

LPS4 = LP + S4 + Positive and negative introspection

= LP + S4 + Decidability of explicit knowledge,

where the ”equality” of logics is understood modulo to replacing some proof
constants by ground proof polynomials.

3.1 Kripke models for LPS4−.

The logics of proofs and provability B [1], BGrz [23, 24], LPP [27, 28], LPGL
(section 2) gave us a clear idea how to build Kripke models for LPS4−. In
these cases a model is a Kripke model for the host modal logic (namely, GL)
with formulas t:F treated as additional atoms satisfying conditions of stability
(every formula t :F either holds at all nodes or does not hold at all nodes),
explicit reflexivity (t:F yields F ) and some sort of reflexivity at the root node.
In the case of S4-models we end up with the same picture, except for the root
reflexivity which holds in an S4-model automatically.

Definition 11. An LPS4−-model is a triple (K,≺, °) where (K,≺) is an S4-
frame (nonempty transitive and reflexive frame), ° is a forcing relation between
nodes of K and LPS4−-formulas satisfying the forcing conditions.

1. usual modal conditions for 2, i.e. ° respects boolean connectives at each
node, a°2F iff b°F for all b Â a;

2. stability of explicit knowledge every formula t:F either holds at all nodes
of K or does not hold at all nodes of K;

3. reflexivity of explicit knowledge: a° t:F yields a°F ;

4. if a°s:(F→G) and a° t:F then a°(s·t):G;

5. if a° t:F then a°!t:(t:F );

6. if a°s:F then a forces both (s+t):F and (t+s):F .

Item 1 shows that the epistemic modality behaves in LPS4− in the normal way.
Items 2 and 3 postulate decidability and reflexivity of explicit knowledge. Items
4-5 give the usual closure conditions on justifications.

A formula F holds in a model M if F holds at each node of M . M is an
CS -model, for a given constant specification CS= {c1:A1, c2:A2 . . . cn:An} if all
ci:Ai ∈CS hold in M . A formula F is CS-valid if it holds in each CS -model.
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From this definition it follows that whereas a°2F is understood in the conven-
tional manner as F holds in all worlds accessible from a given a, an assertion
a° t:F refers to all worlds in the model.

Theorem 5. (Soundness) If A is derivable in LPS4−, then A is CS-valid for a
constant specification CS associated with a given derivation of A.

Proof. Immediate from the definitions. 2

Theorem 6. (Completeness) If A is not derivable in LPS4−CS, then A is not
CS-valid.

Proof. We will use methods of building Kripke style models for logics of explicit
proofs developed in [1],[2] and [28]. Without loss of generality we establish the
completeness theorem for LPS4−∅ , since, by Lemma 9, an LPS4−∅ -countermodel
for

∧
CS→ F is at the same time a LPS4−CS-countermodel for F . We restrict

our considerations to the finite signature of symbols occurring in a given A, i.e.
to a fixed finite set of sentence letters, justification variables and constants. So,
the sets of polynomials and formulas of given length are finite. Let |t| denote
the length (the number of symbols) of t. For a finite set X of formulas by |X|
we understand the largest length |t| of a term t such that t:F ∈ X. By core(X)
we mean the set of all formulas of X of sort t:F .

Definition 12. A set X of LPS4−-formulas is adequate if X is closed under
subformulas and

1. if (s·t):G, F→G are in X, then s:(F→G), t:F are also in X
2. if (s + t):F is in X, then both s:F and t:F are in X.

It is easy to see that any finite set of formulas can be extended to a finite
adequate set.

Definition 13. For a set X LPS4−-formulas by compl(X) we understand the
minimal set containing X and such that

1. if s:(F→G), t:F are in X then (s·t):G is in compl(X)
2. if t:F is in X then !t:t:F is in compl(X)
3. if s:F is in X and |t| ≤ |X|, then both (s + t):F and (t + s):F are in

compl(X).

Let X∞ = X0 ∪ X1 ∪ X2 ∪ . . . where X0 = X and Xi+1 = compl(Xi) for
all i = 0, 1, 2, . . .. Such X∞ is called the completion of X. An LPS4− model
(K,≺,°) is finitely generated if

K ° t:F ⇔ t:F ∈ core(X∞)

for some finite set X.

We will establish the completeness of LPS4−CS with respect to finitely generated
models, which will yield a decidability of LPS4−CS.
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Lemma 10. Given a finite adequate set X and a structure K = (K,≺, °) such
that all conditions from Definition 11 restricted to X hold for K there is a finitely
generated LPS4−-model K1 = (K,≺,°1) which coincides with K on formulas
from X, i.e. for any a ∈ K and F ∈ X

a°F1 ⇔ a°F.

Proof. Consider Y = {t:F ∈ X | K ° t:F} and take its completion Y∞. Define
°1 as

a°1S ⇔ a°S

for any sentence variable S and

a°1t:F ⇔ t:F ∈ Y∞.

Naturally, ° 1 is extended to all formulas by the usual modal truth tables from
Definition 11(1) of an LPS4−-model. First of all, we notice that t:F ∈ Y∞ yields
F ∈ X. We also observe that

a°1G ⇔ a°G (4)

for all formulas G from X. Indeed, this can be shown by induction on G. Base
case 1, G is a sentence letter, is covered by the definition. Base case 2: G is
t:F . Obviously, a° t:F yields a° 1t:F . Suppose t:F ∈ X, a° 1t:F and a 6° t:F .
In this situation t:F has appeared in Y∞ by the completion process. There are
three possibilities: t:F is (u ·v):F , (u+v):F and !s:s:H. If t:F is (u ·v):F ,
then u:(B→F ) ∈ Y∞ and v:B ∈ Y∞ for some B. By the previous observation,
(B→F ) ∈ X, hence, since X is adequate, u:(B→F ) and v:B are both in X.
By the IH, a°u:(B→F ) and a°v:B. Since condition 4 of Definition 11 is met
for°on X, a°(u·v):F , hence a° t:F . The remaining clauses (u+v):F and !s:s:H
are treated in the same manner. Inductive steps employ the same conditions
for both ° and°1. This concludes the proof of observation (4).

Now we claim that K1 = (K,≺, °1) is a desired model for lemma 10. We
first check that K1 is a model. Condition 1 is met by the definition of °1.
Condition 2 (stability) is guaranteed by the fact that a° 1t:F does not depend
on a.

Let us check Condition 3 (explicit reflexivity). Suppose this condition is
violated and consider the first moment in the building of Y∞ when a°1t:F and
a 6° 1F for some a and t:F . Case 1: t:F ∈ Y , i.e. a° t:F . Then t:F ∈ X, and,
since X is an adequate set, F ∈ X. By lemma assumptions, ° is reflexive on
formulas from X, hence a°F and a°1F . Case 2: t:F is (u·v):F and u:(G→F )
and v:G have appeared in Y∞ earlier. By the definition of K1, a° 1u:(G→F )
and a° 1v:G. By the IH, a° 1G→F and a° 1G, hence a° 1F . Case 3: t:F is
(u+v):F where one of the formulas u:F or v:F has appeared in Y∞ earlier and
a ° 1u:F or a ° 1v:F . By the IH, a ° 1F . Case 4: t:F is !s:s:G and s:G has
appeared in Y∞ earlier. By IH, a°1s:G, hence a°1F .

Conditions 4-6 of Definition 11 are met because Y∞ is closed under opera-
tional axioms LP1-LP3.
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Since Y and Y∞ consist of formulas t:F only, core(Y∞) = Y∞ and model
K1 is finitely generated by Y . 2

Lemma 11. If A is not derivable in LPS4−CS, then there is a finite adequate set
X containing A and the structure K = (K,≺, °) such that all conditions from
Definition 11 restricted to X hold for K and A is not valid in K.

Proof. Let X be the smallest adequate set containing A. Apparently, X is
finite. Consider fresh sentence variables St:F for each formula t:F ∈ X. Let σ
be a substitution [St:F /t:F ] for all t:F ∈ X. To every B ∈ X we associate an
S4-formula Bt such that B = Btσ, i.e. B is the result of substituting all t:F ’s for
St:F ’s in Bt. Now we encode the adequacy conditions on X by a propositional
S4-formula. Let Y be the conjunction of the following S4-formulas:

1. St:F →F t

2. Ss:(F→G)→(St:F →S(s·t):G)

3. St:F →S!t:t:F

4. St:F →S(s+t):F , St:F →S(t+s):F

5. St:F →2F t

6. ¬St:F →2¬St:F

The substitution σ makes Y some set of axioms of LPS4−∅ . Moreover, S4 6`∧
Y →At, since otherwise an S4-proof of

∧
Y →At under substitution σ would

became a proof of A in LPS4−∅ . Apply the Kripke completeness theorem for S4
and find a finite S4-contermodel K0 = (K,≺, °0) for

∧
Y →At. By definition,

all formulas from Y hold at each node of K. Now keep the frame (K,≺) and
define K = (K,≺, °) by stipulating

° S ⇔ °0 S and ° t : F ⇔ °0 St:F (5)

Obviously, for all F ∈ X
° F ⇔ °0 F t,

hence the resulting K is a desired model: all forcing conditions from Defini-
tion 11 are met on X, A does not hold in K. 2

Theorem 6 follows now immediately from lemma 10 and lemma 11. 2

Corollary 4. LPS4−CS is decidable for each constant specification CS.

Proof. By Post argument, since countermodels in LPS4−CS are finitely gener-
ated, hence efficiently described. 2
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3.2 Arithmetical semantics for LPS4−.

Arithmetical semantics for LPS4− is provided by the strong provability operator
defined in the provability logic as ¡F := F ∧ 2F . Consider the arithmetical
provability semantics for LPGL in Peano Arithmetic PA (subsection 7) where
2F is interpreted as there is a proof of F in PA and t:F as t is a proof of F in
PA. We recast this to a provability semantics for LPS4− where 2F is interpreted
as

F is true and provable in PA,

whereas t:F is interpreted as before:

t is a proof of F in PA.

Definition 14. Define a translation ()+ of LPS4− formulas into the language
of LPGL

S+ = S, (A→B)+ = (A→B), (¬A)+ = ¬A, (t:A)+ = t:A, (2A)+ = A∧2A.

An arithmetical provability semantics of LPS4− is inherited from the one of the
logic of proofs and formal provability LPGL: in Definition 7 the item correspond-
ing to the modality should be altered to the strong provability reading:

(2F )∗ = F ∗ ∧ ∃xPrf (x, pF ∗q).

Lemma 12. If LPS4− ` F then LPGL ` F+.

Proof. Induction of derivations in LPS4−. Translations of the axioms E1-E3
of S4 are all derivable in GL [7]. Axioms of LP remain axioms of the same sort
after the translation. Let us check the connection axioms of LPS4−: both of
them

(t:F→2F )+ = t:F→F ∧2F

and
[¬(t:F )→2¬(t:F )]+ = ¬(t:F )→(¬(t:F ) ∧2¬(t:F ))

are obviously derivable in LPGL∅, hence in LPGL. The rules are straightforward.
2

Theorem 7. (Arithmetical soundness of logic of knowledge with justifications)
If LPS4− proves F then PA ` F ∗ for any arithmetical interpretation ∗.
Proof. A combination of theorem 3 and lemma 12. 2
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3.3 A complete system of strong provability with justifi-
cations.

An arithmetically complete system LPS4Grz− of the strong provability with
proofs can be axiomatized by adding to LPS4− the modal axiom by Grzegorczyk
2(2(F →2F )→F )→F . Kripke models for LPS4Grz− are the special sort of
LPS4−-models when the frame is a reflexive partial order. These facts can be
established by a straightforward combination of methods from [23, 24] and the
current paper.

3.4 Minimal epistemic logic with justifications LPS4.

Consider the fragment of LPS4−, which we denote LPS4, obtained by omitting
axiom C2 from the Definition 10 of LPS4− above. In other words,

LPS4− = LP + S4 + (t:F→2F ) =

= LP + S4 + positive introspection.

The logic LPS4 is perhaps the minimal epistemic logic with justifications when
no specific assumptions were made concerning the character of the explicit
knowledge operators.

As a formal system LPS4 behaves normally: it is closed under substitutions,
enjoys the deduction theorem, internalization, has reasonable Kripke models
similar to the ones for LPS4− described above, is sound with respect to the
arithmetical semantics of the strong provability similar to the one for LPS4−.
Furthermore, LPS4 has some interesting features not present in LPS4−.

Theorem 8. LPS4 enjoys Fitting semantics.

Proof. Fitting semantics from [12] was designed to model LPCS for a fixed
constant specification CS; this observation secures the “LP-part” of LPS4. Fur-
thermore, Fitting models have S4-frames, which guarantees the soundness of
the “S4-part” of LPS4. The principle t:F→2F holds at each mode of a Fitting
model by the definition of Fitting’s forcing: a° t:F iff t is an acceptable witness
for F at a and b ° F for all nodes b accessible from a. The second of those
conditions immediately yields that a°2F as well. 2

We conclude with formulating some open problems.

Problem 1. Whether LPS4 is compete with respect to the Fitting semantics?

Problem 2. Whether LPS4 enjoys the realization property: given a derivation
D in LPS4 with a given constant specification CS one could find a realization
r of all occurrences of 2 in D and a new constant specification CS ′ containing
CS such that the resulting formula F r is derivable in LPCS′?

Problem 3. Find topological semantics for LPGL, LPS4 and LPS4− that ex-
tends Tarski topological semantics for S4 (cf. [20]) and Esakia topological se-
mantics for GL (cf. [9]).
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